
1

Unified Parallel Software Developer’s Guide1

UPS VERSION=v-02-07-05
Date of this manual’s printing: September 7, 2007

This developer’s guide for UPS (Unified Parallel Software) provides the information necessary for
developers who are implementing components and internal modules for inclusion in the UPS library.
These guidelines ensure the various components of UPS interact properly and in a predictable
manner, and ensure the continuity of the software conventions.

The hero model doesn’t scale.
M. Peterson

1LA-CC 03-041

CONTENTS 2

Contents

1 COPYRIGHT 5

2 Introduction 6

3 Getting Started 7

4 Directory structure 40
4.1 Main UPS Directory . 42
4.2 aux . 42
4.3 doc . 42
4.4 include . 42
4.5 lib . 43
4.6 peer review . 43
4.7 script . 43
4.8 src . 43

4.8.1 Automatic Generation of Interfaces . 44
4.8.2 src User API . 45
4.8.3 src internals . 46
4.8.4 src utils . 46

4.9 testing . 47
4.10 tools . 47

5 Programming Practices 48
5.1 Variable Name conventions . 48
5.2 Style . 48

5.2.1 Spacing . 49
5.2.2 Comments . 49
5.2.3 Common Functionality . 50

5.3 Memory Allocation . 51
5.4 Error Checking . 51
5.5 Environment Variables . 51

6 Porting 52
6.1 Necessary Modifications . 52
6.2 Porting to SGI . 53

6.2.1 Running on Nirvana and Blue Mountain . 54
6.2.2 Running on SGI workstations . 55
6.2.3 Problems on SGI . 55

6.3 Porting to TFLOP . 55
6.3.1 Running on TFLOP . 55
6.3.2 Problems on TFLOP . 56

6.4 Porting to Linux:naxos . 57
6.4.1 Running on Linux:naxos . 57
6.4.2 Problems on Linux:naxos . 58

6.5 Porting to Linux:lambda . 59
6.5.1 Running on Linux:lambda . 59
6.5.2 Problems on Linux:lambda . 60

6.6 Porting to Linux:intel1/bengal . 61
6.6.1 Running on Linux:intel1/bengal . 61
6.6.2 Problems on Linux:intel1/bengal . 62

CONTENTS 3

6.7 Porting to Compaq Q - Alpha/HP/OSF . 62
6.7.1 Running on Compaq Q . 62
6.7.2 Problems on Compaq Q . 63

6.8 Porting to Sun . 64
6.8.1 Running on Sun . 64
6.8.2 Problems on Sun . 65

6.9 Porting to AIX . 65
6.9.1 Running on AIX . 66
6.9.2 Problems on AIX . 67

6.10 Porting to 68
6.10.1 Running on ... 68
6.10.2 Problems on ... 68

7 The UPS CVS Repository 69
7.1 Version Number . 69
7.2 Committing code to the repository and installing/releasing 69

8 Adding Parts 73
8.1 Adding a New Test . 73
8.2 Adding a User Accessible Function . 73
8.3 Adding a New Package . 74
8.4 Adding New Aux Product . 74
8.5 Adding New Tool . 75
8.6 Adding Ability for Someone to Access UPS . 75

9 How do I 77
9.1 CVS . 77

9.1.1 ...get rid of empty directories and get files that others have a dded 77
9.1.2 ...look at an older version of an existing file with cvs? 77
9.1.3 ...look at a specific version of a file . 77
9.1.4 ...look at an old version of a file in a directory that doesn’t exist anymore . . 77
9.1.5 ...check out a previous installation . 78
9.1.6 ...add a directory tree to the repository . 78
9.1.7 ...remove a directory tree from the repository 78
9.1.8 ...turn off commits . 79
9.1.9 ...look at the differences you have made in a file as a whole 79
9.1.10 ...check the differences between a file and the most recent checked in version . 79
9.1.11 ...move the whole repository to a new location 79
9.1.12 ...abort a commit . 80

9.2 Perl . 81
9.2.1 ...edit a whole bunch of files with a simple search/replace 81

9.3 Make . 82
9.3.1 ...eliminate most errors I am having with make 82
9.3.2 ...switch from creating a debug version to an optimized version of libups.a . . 82
9.3.3 ...easily run the tests given that I have 2 libraries 82
9.3.4 ...install ups, but just copy the files . 82

9.4 SQA . 83
9.4.1 ...get others to review my code I wish to commit 83
9.4.2 ...use Insure (compile-time/run-time code checker) 83
9.4.3 ...use Purify (run-time code checker) . 84

9.5 Xemacs . 85

LIST OF FIGURES 4

9.5.1 ...change file type mode . 85
9.6 Misc . 86

9.6.1 ...recover files from a NetApps file system . 86
9.6.2 ...modify the ups-team/ups-user mailing lists 86

A Source Examples 88
A.1 Makefile Example . 88
A.2 C Include File Example . 90
A.3 C Source Example . 92

List of Figures

1 Example of CVS Commit Log . 71

1 COPYRIGHT 5

1 COPYRIGHT

LA-CC 03-041
C-03,097

Copyright (c) 2003, The Regents of the University of California
All rights reserved.

Copyright (2003). The Regents of the University of California. This software was produced under U.S. Government contract W-7405-ENG-36 for Los Alamos National Laboratory (LANL), which is operated by the University of California for the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works, such modified software should be clearly marked, so as not to confuse it with the version available from LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the University of California, LANL, the U.S. Government, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2 INTRODUCTION 6

2 Introduction

UPS, an acronym for “Unified Parallel Software”, is a library of routines designed to help the
application developer create efficient, extensible, and robust large scale parallel programs for physics
simulations. It is designed to run in any computing environment that supports the C programming
language and which provides a method for moving data between parallel processes2.

Some parallel programming models attempt to hide the parallelism from the application writer,
while others require the application writer work at the lowest levels. UPS falls in between: it is
designed to expose the parallel environment in a natural way while abstracting away the complexities.

This developer’s guide provides programmers the details necessary for contributing to the UPS
software library. Such contributions may be in the form of entire components or as software internal
to a component. For an overview of UPS from the application developer’s perspective, see the User
Guide [1].

We expect three steps to be followed by potential UPS developers:

1. read the user guide

2. communicate with UPS team, and

3. read this developers guide.

2The default mechanism is MPI[3].

3 GETTING STARTED 7

3 Getting Started

The following is the README file found in the top level directory.

$Id: README,v 1.109 2005/10/14 20:17:54 lmdm Exp $

LA-CC 03-041, C-03,097

This file contains general information on how to build UPS and the
change history.

If you get stuck, contact ups-team@lanl.gov. Feedback is appreciated as well.

Also, for more information see
doc/UserGuide/UserGuide.ps and
doc/DeveloperGuide/DeveloperGuide.ps

http://public.lanl.gov/ups

Sections

- Basic Build Overview
- Necessary Utilities
- Creating make.inc
- Personal Workspace Build: out-of-tree build
- Personal Workspace Build: build then mini-install
- Installation Build
- Warnings/Errors
- Expected times
- Tags
- Outstanding Issues
- Release Messages

Basic Build Overview

This section gives a condensed version of what you should probably do if
given a UPS tar file. If you wish to do something special, read the
sections below for more information.

1) % gzip -dc UPS_dist_<YYMMDD>.tar.gz | tar xvfp -
This will gunzip/untar the UPS distribution tar file you were given.

2) % cd UPS
This is the directory that is created by the above command.

3) % ./configure.pl go -debug INSTALL_DIR=/tmp/ups_instal
This configures without debug (eg optimized) and sets the installation
directory to be /tmp/ups_install (so change that to be whatever).

4) % gmake
This builds UPS and runs the tests.

5) % gmake install_arch
This installs into the directory specified by INSTALL_DIR above.

3 GETTING STARTED 8

You can type in "gmake help" for a list/explanation of targets.

Necessary Utilities

Hopefully, everything is set up and you won’t need to change anything.
However, one should check this section to assure everything is accessible.
There are different levels of "building UPS". If you are not interested,
for example, in building the Guides, you do not need to have access to
the utilities listed in number 4 (below).

It makes life easier if the utilities are in your path. UPS is designed to
take advantage of the PATH environment variable. In some cases (eg the CC
variable in configure.dat/make.inc), you can specify a the full path name
to the utility.

1) Requirements for building UPS - this is what is minimally needed:
0- gmake
0- perl
0- C compiler

Set in configure.dat/make.inc (CC and FLAGS_*_C variables)
If you are building without Fortran, you must give the
"+no_fortran" flag to configure.pl.
See Creating make.inc below.

0- MPI
UPS must be able to find the location of mpi files. On some systems
(eg bluemountain), MPI is tightly integrated with the system and
the compiler will find the include file without having to specify
an additional "-I<location>" flag. On other systems (especially
if you are using mpich), set the MPI_ROOT environment variable
to point to the correct location (eg ${MPI_ROOT}/include points to
the directory containing mpi.h).
See Creating make.inc below.

2) Requirements for running UPS tests:
0- MPI

UPS must be able to run executables. Modify RUN_NAME in
configure.dat/make.inc if necessary.

3) Requirements for building UPS with Fortran:
0- Fortran compiler

Set in configure.dat/make.inc (FC and FLAGS_*_F variables).
See Creating make.inc below.

4) Requirements for building Guides:
0- latex

Our documents are written in LaTeX format.
latex: builds .dvi file from .tex files
dvips: builds .ps file from .dvi file
pdflatex: builds .pdf file from .tex files
These executables are located on (if mounted):

3 GETTING STARTED 9

/usr/projects/ups/teTeX/bin/mips-irix6

5) Requirements for Script/ups_aa_statistics_plot.pl:
0- gnuplot

This script uses gnuplot to create a post-script document from
ups_log.txt. Again, if you are not interested in running this
script, you do not need access to gnuplot.

6) Requirements for CVS access to repository
0- cvs - version 1.10 or later
0- Scripts: some useful scripts are located in the CVSROOT product.

So, you need to set your path to $CVSROOT/CVSROOT or check out
CVSROOT and set your path to that directory.

0- In order to get UPS from the repository, one can:
cvs -d /usr/projects/ups/Repository co -P UPS

Creating make.inc

Run the configure script:

configure.pl go

configure.pl uses configure.dat to create make.inc.

make.inc is a gmake include file containing variables, suffix rules,
targets/prerequisites/rules, and other gmake commands. The variables
are defined according to what the value of CONFIGURE_OPTIONS is
in configure.dat. If you wish to make permanent changes to either the
CONFIGURE_OPTIONS or the gmake variables, you can edit configure.dat.
However, the options and variables can be overridden from the command line
of configure.pl so this might be an easier solution. Of course, you
may modify make.inc itself. However, changes done will be overridden
when configure.pl is run again.

The directory where configure.pl creates make.inc is the following (in order
of preference):

o "-d <directory>" flag passed to configure.pl
o current working directory is the default

Type in "configure.pl" to get info about the basics of the configure.pl script.
Type in "configure.pl help" for common use cases.

We have tried to make it so no modification of files is needed. One should
only have to type in "configure.pl go" in order to get things to run.

I have the following code in my .cshrc to help automate this process:

switch ("‘uname -n‘")
#...if you are on lambda...
case lambda:

3 GETTING STARTED 10

case l[0-9][0-9]:
case l[0-9]:

setenv UPS_PREFIX /netscratch/${USER}/UPS_build
setenv PATH ${PATH}:${UPS_PREFIX}/bin/LINUX32_mpi
setenv LD_LIBRARY_PATH \

${LD_LIBRARY_PATH}:${UPS_PREFIX}/lib/LINUX32_mpi
breaksw

#...if you are on theta...
case theta:
case t[0-9][0-9]:
case t[0-9]:

setenv UPS_PREFIX /scratch/${USER}/UPS_build
setenv PATH ${PATH}:${UPS_PREFIX}/bin/SGI64_mpi
setenv LD_LIBRARY64_PATH \

${LD_LIBRARY64_PATH}:${UPS_PREFIX}/lib/LINUX32_mpi
breaksw

#...default...
default:

setenv UPS_PREFIX /scratch/${USER}/UPS_build
breaksw

endsw
alias configups ’configure.pl -d ${UPS_PREFIX}’

Now, after running the aliased "configups go [options]" command, I don’t
have to worry about it any more. The make.inc file is placed in the
${UPS_PREFIX} directory along with the build files (see "Personal Workspace
Build" below).

Personal Workspace Build: out-of-tree build

Suppose you have the UPS source on a cross mounted directory
and are building it for different architectures. Also, suppose that the
arguments passed to configure.pl are the same for both architectures.
An out-of-tree build will simplify builds.

- UPS source: /home/lmdm/UPS
- Machines: A and B
- Environment Variables: UPS_PREFIX = top dir for architecture dependent files

UDM_ROOT = where UDM is located
- Machine A configure.pl options: -debug +no_fortran
- Machine B configure.pl options: +i8r8

1) machine A .cshrc: setenv UPS_PREFIX /netscratch/lmdm/UPS_build
setenv UDM_ROOT /foo/bar/UDM_linux

machine B .cshrc: setenv UPS_PREFIX /scratch/lmdm/UPS_build
setenv UDM_ROOT /foo/bar/UDM_irix64

Basically, set these variables in your .cshrc so they are the
correct values for what machine you are currently on.

2) machine A: configure.pl -d ${UPS_PREFIX} go -debug +no_fortran
Initial creation of ${UPS_PREFIX}/make.inc.

3 GETTING STARTED 11

3) machine A: gmake
Build and put architecture dependent stuff in /netscratch/lmdm/UPS_build
on machine A using the UDM at /foo/bar/UDM_linux
This will build the documentation (if necessary), build the ups
library(ies), build the tests, and run the tests.

4) machine B: configure.pl -d ${UPS_PREFIX} go +i8r8
Initial creation of ${UPS_PREFIX}/make.inc.
As in step 2, this creates ${UPS_PREFIX}/make.inc

5) machine B: gmake
Build and put architecture dependent stuff in /scratch/lmdm/UPS_build
on machine B using the UDM at /foo/bar/UDM_irix64
This will build the documentation (if necessary), build the ups
library(ies), build the tests, and run the tests.

6) machine ?: gmake
From then on, when you go to a different machine, you no longer have
to change make.inc - just run your gmake command.

Concurrent builds (gmake on machine A while a gmake on machine B is
running) are possible since all machine dependent files are located
in their own directory (${UPS_PREFIX}).

Personal Workspace Build: build then mini-install

1) create make.inc (see Creating make.inc above)

One can override the default installation directory by configuring via:
configure.pl go INSTALL_DIR=/tmp/my_temp_install

Other variables that may be set as well are:
INSTALL_DIR_BIN
INSTALL_DIR_DOC
INSTALL_DIR_INCLUDE
INSTALL_DIR_LIB
INSTALL_DIR_SCRIPT

2) gmake
3) gmake install_arch

This last step just copies files to the INSTALL_DIR location.
This does not need to be done if you are just going to be
using the files in their original locations.

--
Official Installation Build for Developers
--
1) create make.inc (see Creating make.inc above)
2) gmake full

This does a gmake for different configure.pl command line settings
and builds necessary documentation if necessary. If you were given
a distribute tar file, all the documentation is already built.

3) gmake install_dev
This copies over files to the INSTALL_DIR/PRODUCT_VERSION, installs
the web pages, and does a cvs tag (if cvs accessible).
If you were given a distribute tar file, you probably want to do a

3 GETTING STARTED 12

"gmake install_arch INSTALL_DIR=<location>" instead.

Warnings/Errors

After building UPS (ie running gmake), you can type in

gmake check_all
This will filter the output file ($UPS_PREFIX/make_all_<arch>.txt) and
return any errors/warnings/remarks that are important).

The following are warnings/errors you might/should see (which are O.K.):

--BUILDING--
1) **Error** Needed to update [make.inc].

...
Now re-run your gmake command.

make.inc is automatically generated and sometimes needs to be
rebuilt (eg if you modify configure.dat). The build system detects
this and remakes make.inc. You then need to re-run your gmake command.

2) <LaTeX warnings>
If the Guides need to be rebuilt, LaTeX will be run and it spits out
warning messages like there was no tomorrow (thousands of lines).
This is normal for latex and eventually, the Guides should be built.

3) ar: Warning: creating ...
ar gives a warning when a library is created.

4) ld64: WARNING 84 : ...lib... is not used for resolving
Some additional libraries are included that might not be needed for
certain executables.

--TESTING--
1) **UPS Error** upsp_er_sig_alarm (UPS detected hang) (-997)

Testing of alarms in the er package are supposed to generate this message.

After all the tests have run, a pass/fail summary is printed. All tests
should pass.

--INSTALLING--
1) tar: can’t set time on .: Not owner

When installing the web pages, one might see this error message.
This is ok.

Expected times

I have given the "linux" times. If you are on a slower machine (as there
is no faster machine than linux :)), you might have a time multiplier.
For example, on a busy sgi (theta), multiply the time by 5.

- HDF (an aux product UPS uses): 5 minutes
- UPS lib/execs: 5 minutes
- UPS Running Tests: 2 minutes

3 GETTING STARTED 13

Tags

v-##-##-##: full release
v-##-##-##_*: minor release before v-##-##-## release
sf: original tar bal put into SourceForge UPS project
glp_deposit: what was given to business folks for gnu open licensing

Outstanding Issues

- LAMPI: When running UPS tests with lampi, the dp sort test
fails due to LAMPI bug. MPI_Alltoallv should allow for NULL
buffers if the counts are 0 but it doesn’t.
Reported to LAMPI folks and will be fixed.
No new UPS needs to be built - just relink of executable.

==
RELEASE MESSAGES BELOW

==

==========================
New UPS Version v-02-07-04 (2005/10/14)
==========================

OS Tested:
IRIX64
Linux (and with bproc)
OSF1
AIX

Environment:
Please see lib/libups.settings for the environment used.

Products:
hdf: hdf5-1.6.2

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-07-03 (apart from various bug fixes)
==============================
o DP Sort
Changed sorting technique from a bubble sort to a binning sort:
. Sample to create bins
. Disperse data to pes according to bins
. PEs sort on local data
. PEs disperse data back to original sizes

This sort takes up more memory (about 2-3x original buffer size)...but
is much faster. On pink (bproc linux cluster), it sorted 2 billion doubles
distributed to 128 PEs in 1 minute (about 10000 times faster than the

3 GETTING STARTED 14

original method).

o CM Shared Memory
- Added ability to set the process group that can connect to a shared
memory area via UPS_CM_SM_set_item or the UPS_AA_MEM_ITEM_P_GROUP.
By default, the value is UPS_CM_P_GROUP_BOX (same hostname).
You might, for example, wish to see how your algorithm performs using
no shared memory and set it to UPS_CM_P_GROUP_SELF.

==========================
New UPS Version v-02-07-03 (2004/06/12 00:29:09)
==========================

Machines Installed: theta/bluemountain, lambda, q(s)

Environment:
osf: fortran_5.5.1, CXX_6.5.1, MPI_64bit_Thread_Safe_R13.4
sgi: MIPSpro_7.3.1.2m, mpt_1.6
linux: absoft_8.2, gcc_3.2.3,

mpich_1.2.5.absoft_8.2

Products:
hdf: hdf5-1.6.1

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-07-02 (apart from various bug fixes)
==============================
o Ported to lightning cluster

o GS and IO Package
Added better statistics (eg MB/S rates) that are printed out in
ups_log.txt output file.

o check_space target added
When building UPS from source, checks are periodically made to see
if enough space is available. A warning gets printed if there might
not be sufficient space.
Type ’gmake help’ for more info.

o HDF version change from hdf5-1.4.5-post2 to hdf5-1.6.1
This is transparent to the users.

o Gather/Scatter Package

+ If given a non-0 gs_id value during a setup call, UPS will try and use
that ID value (will assign another value if necessary).

+ If given a 0 gs_id value during UPS_GS_Free, UPS will free all gs
structures built from gs setup calls.

3 GETTING STARTED 15

+ Added ability to get/set GS optimization options more easily (and see
how effective the optimizations were). Nothing new is needed to be
done by the user - these just make it easier to changes options if
desired.

- The following options that affect GS optimizations have been added
to the UPS_AA_Opt_get() call (any may be set as environment variables as
well):
UPS_GS_OPT_COMPRESSION, /* Purpose: sets whether or not to try compression

* Datatype: int4 (UPS_DT_TRUE=1/UPS_DT_FALSE=0)
* Get: yes
* Set: yes
* If true, will try to use compression.
* (a duplicated index is sent once and coppied
* on the receiving side) */

UPS_GS_OPT_COMP_LOOKAHEAD, /* Purpose: num of indices for compression scan
* Datatype: int8
* Get: yes
* Set: yes
* This sets the number of indices to look for
* when doing compression. The different
* values are:
* <0: scan whole array (costly)
* 0: do not do compression
* >0: look ahead this number of indices */

UPS_GS_OPT_COMP_RATIO, /* Purpose: sets minimum compression ratio
* Datatype: real8
* Get: yes
* Set: yes
* Ratio = 100*Comp_Size/UnComp_Size (rounded)
* Values will then ranbe from 0 - 100.
* The lower the value, the more compressed.
* The ratio for a particular GS setup must be less
* than this value in order to use compression.
* <0: Use compression for any ratio
* 0: do not do compression
* >0: use this ratio value */

UPS_GS_OPT_COMM_ORDERING, /* Purpose: num of indices for compression scan
* Datatype: int4 (UPS_DT_TRUE=1/UPS_DT_FALSE=0)
* Get: yes
* Set: yes
* If true, will try to order send/recvs
* (eg start offbox communication before onbox)*/

NOTE: all processes must set the same values

- The following option has been added to the UPS_GS_Get_item() call
to get the amount of compression that was done for a particular
setup GS id:
UPS_GS_COMP_EFFECT: real8 ranging from 0-1 with 0 meaning no
compression.

3 GETTING STARTED 16

==========================
New UPS Version v-02-07-02
==========================

Machines Installed: theta/bluemountain, lambda, q(s)

Environment:
osf: fortran_5.5.0, CXX_6.5.1, MPI_64bit_Thread_Safe_R12
sgi: MIPSpro_7.3.1.2m, mpt_1.6
linux: LaheyFortran95Pro_6.1, gcc_3.2.1,

mpich_1.2.4.LaheyFortran95Pro-6.1

Products:
hdf: hdf5-1.4.5-post2

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-07-01 (apart from various bug fixes)
==============================
o UPS Internal Error Reporting
One can call UPS_AA_Opt_set(UPS_ER_OPT_OUTPUT, &output_type) and
set output_type to one of the following

UPS_ER_OUTPUT_DEFAULT (standart error)
UPS_ER_OUTPUT_FILE (ups_err.txt file)
UPS_ER_OUTPUT_NONE (no output)

See the Use Details:Error Reporting section of the UserGuide for
more information.

o UPS Version Consistency

More ability to see/check UPS version for consistency has been added.
Now users can get the UPS version number from the following:
- Installation Directory (v-##-##-##)
- Header Files (ups.h, upsf.h, upsf77.h)
UPS_VERSION constant defined

- Function Call
F: call UPSF_AA_OPT_SET(UPS_AA_OPT_VERSION_CHECK, UPS_VERSION, ierr)
F77: call UPS_AA_OPT_SET(UPS_AA_OPT_VERSION_CHECK, UPS_VERSION, ierr)
C: int version_ups=UPS_VERSION;

UPS_AA_Opt_set(UPS_AA_OPT_VERSION_CHECK, &version_ups);
- Function in libups.a (ups_version_<version number>)
Users can ’nm libups.a | grep -i ups_version’ to get the version of
the library.
C users may make a call to UPS_VERSION_CHECK() which will show a
version mismatch at link time (as opposed to run time).
C: UPS_VERSION_CHECK();

This is an additional call to C users that will show

See the Use Details:UPS Version Consistency section of the UserGuide for

3 GETTING STARTED 17

more information.

o GS Package - Added two items that can be gotten from UPS_GS_Get_item()
- UPS_GS_INDEX_PE
(int array) The size of this array can be obtained by
UPS_GS_NUM_GLOBAL_INDICES.
Regardless of which GS setup call made, UPS_GS_INDEX_PE and
UPS_GS_INDEX_VALUE can be obtained. The values of these
correspond to the index_pe and index_value arguments to
UPS_GS_Setup_s_local() call. See that function for more
information.
Each value of this array contains the process number that owns
the corresponding index.
Possible values:

UPS_GS_INDEX_ZERO: scatter skips, gather zeros
UPS_GS_INDEX_SKIP: scatter skips, gather skips
0 through numpes-1: process the index resides on

- UPS_GS_INDEX_VALUE
(int array) The size of this array can be obtained by
UPS_GS_NUM_GLOBAL_INDICES.
Regardless of which GS setup call made, UPS_GS_INDEX_PE and
UPS_GS_INDEX_VALUE can be obtained. The values of these
correspond to the index_pe and index_value arguments to
UPS_GS_Setup_s_local() call. See that function for more
information.
Each value of this array contains the 0 based index into the
local array of the process that owns the corresponding index.
If the corresponding index_pe is a special index (less than 0),
the corresponding index_value is not used.
Possible values:

UPS_GS_INDEX_ZERO: scatter skips, gather zeros
UPS_GS_INDEX_SKIP: scatter skips, gather skips
>=0: 0 based index into local array

o AA Package - Initializing UPS from C or Fortran Main Programs

[The default behavior is still the same (ie if you have working code now,
you do not have to change anything).]

Previously, if the main program was C, you had to use the C UPS
initialization routine UPS_AA_Init(argc, argv). Likewise, if the
main program was Fortran you had to call the UPS Fortran interface
initialization routines UPS_AA_INIT(error_flag) or
UPSF_AA_INIT(error_flag). This is due to a quirk of MPI where the
appropriate language interface to MPI_Init must be called.

Some flexability has been added so now users can set options (via
calling to UPS_AA_Opt_set) telling UPS what the main language is (and
what the command line arguments are if using C). This allows, for
example a single call to UPS_AA_INIT (Fortran UPS initialization call) to
be used for Fortran main programs (default) and C main programs (as long

3 GETTING STARTED 18

as the C main calls UPS_AA_Opt_set and sets the language and command line
options correct options).

See the UPS_AA_Init in the UserGuide for examples of use.

o tools/libuserd-HDF: ups_libuserd_script.pl
This script is used to create casefile(s) and an EnSight input file.
This input file can then be fed to EnSight to load up all meshes
found in the groups specified by the -d option:

% ups_libuserd_script.pl gresho.pst.0000* -d /jade
% ensight7 -p ups_libuserd.script

o For Building UPS: New "module" system.
A new module system has been installed. This required a small change
to the Makefile system (one line in configure.dat).

o For Building UPS: Software Quality Tools
I have added the ability to more easily run tools like insure, gcov, lint,
third, mview, Run ’configure.pl help’ for more info.

==========================
New UPS Version v-02-07-01
==========================

Machines Installed: theta/bluemountain, lambda, q(s)

Environment:
osf: fortran_5.4.1, CXX_6.5.1, MPI_64bit_Thread_Safe_R12
sgi: MIPSpro_7.3.1.2m, mpt_1.6
linux: LaheyFortran95Pro_6.1, gcc_3.0.4,

mpich_1.2.4.LaheyFortran95Pro-6.1

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-07-00 (apart from various bug fixes)
==============================
o tools/libuserd-HDF
- Setting environment variable LIBUSERD_HDF_SET_SOLUTION_TIMES
Setting this causes the reader to set solution times itself
instead of using the one found in the hdf file. The solution
time will be the same as the time step. This is useful if
you wish to look at multiple meshes that have the same
solution time (by default, data with the same solution time
is ignored...a requirement of EnSight).

o tools/ups_libuserd_prep.pl
- added -v flag for verbose output

o HDF
New version of HDF used - hdf5-1.4.5-post2

==========================
New UPS Version v-02-07-00

3 GETTING STARTED 19

==========================

Machines Installed: theta/bluemountain, lambda, q(s)

Environment:
osf: fortran_default, CXX_default, MPI_64bit_R12
sgi: MIPSpro_default, mpt_default
linux: LaheyFortran95Pro_6.1, gcc_3.0.4,

mpich_1.2.4.LaheyFortran95Pro-6.1

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-06-00 (apart from various bug fixes)
==============================
o Port to LLNL AIX compute servers
UPS has been ported (well, re-reported) to open and secure LLNL
compute servers (blue/frost and white). I will periodically install
new versions on those machines now as well.

o UT Package: UPS_UT_Sleep()

A high resolution sleep has been added to UPS. This portable function
takes a double for the seconds to sleep. nanosleep or usleep is called
on supporting architectures.

o IO package: added optioins to UPS_IO_Info_item_get()

UPS_IO_INFO_PATH and UPS_IO_INFO_PATH_LENGTH will return info
about the full path to the object in the info_id obtained
from UPS_IO_Info_create()/UPS_IO_Info_create_self() calls.
The full path to an object is nice since you can point to it
from any location id - something you cannot do with a relative
path (ie UPS_IO_INFO_NAME).

o Tools
bin/ups_io_bob_to_hdf

This tool takes a ’brick of bytes’ and writes them to an HDF file.
This HDF file can the be visualized via the EnSight reader
libuserd-HDF.

lib/libuserd-HDF
- Added ability for user to supply graphics files where the number
of variables and/or parts can change from time step to time step
(EnSight by itself cannot handle this).

However, there is a performance detriment at startup for this
ability. If possible, you should consider using the following
environment variables (from the README):

- LIBUSERD_HDF_CONSISTENT_PARTS
LIBUSERD_HDF_CONSISTENT_VARS
This comma delimited list (no whitespace) contains the time

3 GETTING STARTED 20

steps in which parts and/or vars change.
By default (environment variables not being set), the reader
assumes that the following can change from time step to
time step:

PARTS:
o Number of parts
o Path to each part in HDF file
o Structured: ijk dimensions remain the same
Unstructured: number of elements for each element type

VARS:
o Number of variables
o Path to each variable in HDF file

Significant performance at EnSight startup can be obtained if
you can set these environment variables.
Example: setenv LIBUSERD_HDF_CONSISTENT_PARTS

Parts remain consistent throughout the time steps.
Example: setenv LIBUSERD_HDF_CONSISTENT_PARTS 0,5

Times steps 0 through 4 are consistent and time steps
5 on are consistent.

If unsure which time steps are consistent for parts or vars,
use ’ups_libuserd_prep.pl <casefile>’.

Also more statistics were added to the reader. The compute-intensive
portions of the reader are statistics-ized and the final output
file ups_log.txt has this info (first 10 code locations).

- Added ability for HDF-EnSight reader to look in multiple places
for EnSight geometry and/or variable information. This
is done by creating additional top level string attributes that
start with the name EnSight_model. The values of these attributes
are the full path to locations in the file to look for EnSight data.

If duplicate data is found, the first one will be used (eg duplicate
variable names).

bin/ups_aa_libuserd_query to bin/ups_libuserd_query
Can now get a lot more information about the file.
Run this tool without arguments to get a help message.

bin/ups_libuserd_prep.pl
Script to help in EnSight reader performance.
Run this tool without arguments to get a help message.

ups_procmon
A simple process monitor has been written that gives information
about a process (via a time-sampling technique).
This tool is still under development...and under review to see
if it is useful.
See the documentation in doc/doc_ups_procmon for more information.

o Performance Enhancements
- Tools/libuserd-HDF EnSight reader
- Default behavior for UPS internal memory checking has been changed
from:

3 GETTING STARTED 21

always on
to
on if UPS built in debug mode and off otherwise

You can still modify this behavior by setting UPS_MEM_NO_MANAGEMENT
environment variable. Set to 0 if you want memory management on,
set to nothing or non 0 if you do not want memory management.

- Removed eliminated additional creat in UPS_IO_Info_count

o Building without some UPS packages
Although the default is to build/install UPS with all of its pacakges
built, it is now possible to build UPS without some of its higher level
packages(DP = Data Parallel, IO = File IO, and/or GS = Gather Scatter).
If there are any requests to do so, I can build UPS this way.

o Profiling Libraries
UPS can now be built under varios profiling libraries (insure++, lint,
vampir, fpmpi, ...).

o HDF
UPS now uses (and builds) the new release hdf5-1.4.5 .

==========================
New UPS Version v-02-06-00
==========================

Machines Installed: theta, lambda, bluemountain, q(s)

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-05-02
==============================
o Tools
bin/ups_aa_libuserd_query

Purpose: Query EnSight files using a USERD defined lib
(eg libuserd-HDF.a).

Format:
ups_aa_libuserd_query -casefile <casefile> [option(s)]

Options:
-casefile: Whatever you would supply to EnSight in the

’Set (Case)’ field when defining the data reader.
You might have to run ups_aa_libuserd_query in the
same directory as the casefile.

-v: verbose output (screen output and ups_log.txt file
created)

-number_of_time_steps
-solution_times

Examples:
- ups_aa_libuserd_query -casefile foo.h5 -solution_times

3 GETTING STARTED 22

Return the solution times for the foo.h5 casefile.

lib/libuserd-HDF
Added ability for user data files to be 2-d and still be
understandable to EnSight. Basically, I simulate dimensions
until 3-d requirement is met.

lib/libuserd-HDF
Added ability to more easily view ’cell’ variables for structured
meshes. If you use the following methods:

(coordinates_x, coordinates_y, coordinates_z) or
(coordinates_axis_x, coordinates_axis_y, coordinates_axis_z)

An EnSight part for cells will automatically be created:
part_ups_cell.

You can then just define variables on part part_ups_cell:
1d --> bar2
2d --> quad4
3d --> hexa8

o UPS General change
In an effort to reduce the size of UPS
(documentation/libraries/source code), I am removing functions that
fall into the following categories:

- Functionality exists in MPI calls and UPS offers no benefit
- Functionality exists in other UPS calls

There are some UPS functions that do fall into the above categories
that I am keeping. For example, UPS_CM_Get_penum is commonly used
and UPS_CM_Bcast allows broadcasting of large messages where most MPI
implementations would choke on.

With the removal of unnecessary(?) page-breaks and examples, the
number of pages in the UPS UserGuide has been reduced by 1/3.

The following functions have been removed (the substitutions are
listed). Email ups-team@lanl.gov if you have any concerns.

-- send/recv calls
use MPI_Send, MPI_Recv, MPI_Wait
to be removed:
UPS_CM_CINIT
UPS_CM_CRECV
UPS_CM_CSEND
UPS_CM_CWAIT
UPS_CM_RECV
UPS_CM_SEND

-- Packing calls
use MPI_Pack, MPI_Unpack, MPI_Msginfo, MPI_Probe, MPI_Get_count

3 GETTING STARTED 23

to be removed:
UPS_CM_FREE_BUFFER
UPS_CM_INITSEND
UPS_CM_MSGINFO
UPS_CM_PACK
UPS_CM_PBCAST
UPS_CM_PRECV
UPS_CM_PROBE
UPS_CM_PSEND
UPS_CM_UNPACK

-- Collective maxloc/minloc
use MPI_Allreduce
to be removed:
UPS_CM_GLOBAL_MAXLOC
UPS_CM_GLOBAL_MINLOC

-- Sendrecv
use MPI_Sendrecv
to be removed:
UPS_CM_SENDRECV
UPS_CM_SENDRECV_INIT
UPS_CM_SENDRECV_TWO
UPS_CM_SR_RESET

-- Host information
already contained in UPS_CM_P_group_item
to be removed:
UPS_CM_GET_HOST_NUMPES
UPS_CM_GET_HOST_PENUM
UPS_CM_GET_HOSTNUM
UPS_CM_GET_NUMHOSTS

-- Getting name of datatype
use UPS_UT_Get_name_or_value
to be removed:
UPS_DT_TO_CHAR

o AA Package
Added the following options that can be used in
UPS_AA_Opt_get():
- UPS_AA_OPT_INITIALIZED: returns if UPS has been initialized
- UPS_CM_OPT_PROTOCOL_INIT: determine if the underlying communication

protocol (usually MPI) has been initialized.

o IO Package - Creating a Dataset from Pieces

There may be times when you wish to create a global dataset but you
only have access to a subset of the pieces at one time. You can call
UPS_IO_Dataset_write() multiple times with the following caveats:

- UPS_IO_Dataset_write() is a collective call.

All processes must still call UPS_IO_Dataset_write. If a process
has no data, set UPS_IO_INFO_DIMS to 0s.

3 GETTING STARTED 24

- You must set UPS_IO_INFO_NDIMS, UPS_IO_INFO_DIMS,
UPS_IO_INFO_STARTS and UPS_IO_INFO_DIMS_TOTAL.

You cannot use the default or UPS_IO_INFO_PGRID settings and you
must know the total size of the dataset beforehand.

- The datatype, UPS_IO_INFO_NDIMS, UPS_IO_INFO_DIMS_TOTAL,
cannot change.

- You must set UPS_IO_INFO_DIMS and UPS_IO_INFO_STARTS
when reading the dataset back.

Saying "must" is a little strong..."should" perhaps is better.
Using the underlying protocol UPS_IO_PROTOCOL_HDF, the default
values gotten from UPS_IO_Info_create() ("what this process
wrote is what it reads") will get each process only the data it
wrote during the last UPS_IO_Dataset_write(). However, other
protocols might behave differently.

So, better safe than sorry - set dims and starts manually.

o IO Package - Recursive info count/create
Added the ability to for UPS_IO_Info_count and UPS_IO_Info_create
to work recursively via calling UPS_IO_Filter_set to set the
appripriate filter. Previously the count/create calls would
only get information about the current object (eg the number
of members in a group).

Currently, the only filters available are the following:
- object_name
This will do a match for object_name in the
members in the list.
This effectively limits the number of
matches to 1 (if found) or 0 (if not found).

- */object_name
This will also match object_name
recursively through any subgroups.
Not valid for UPS_IO_INFO_LIST_ATTRIBUTES.

- */
This will do a recursive listing of all
members.
Not valid for UPS_IO_INFO_LIST_ATTRIBUTES.

So now you can now more easily answer questions like, "Is there
a dataset named ’foo’ anywhere in the file?"

o UPS_CM_Sm_get_item, UPS_CM_Sm_malloc, UPS_UT_Mem_get_item
(These routines deal with with getting/setting memory chunks)
The argument for memory size had been a C long. This translated
to being a 4 byte int or an 8 byte int depending on compilation.

3 GETTING STARTED 25

Now, the argument is explicitly a long long (int8) removing
ambiguity.

==========================
New UPS Version v-02-05-02
==========================

Machines Installed: theta, lambda, chi, bluemountain, q(s)

Please email ups-team@lanl.gov if you have any questions/comments.

Major Changes since v-02-05-00
==============================
o Tools
lib/libuserd-HDF
EnSight reader can now handle structured data where geometry data
is defined along the axis (as opposed to each node having geometry).
This is the coordinates_axis_[xyz] option below.

If (coordinates):
2d float dataset [n][3] - each row contains the x, y, z
coordinates.

If (coordinates_x, coordinates_y, coordinates_z):
Each dataset is an nd dataset containing the corresponding
component.
Unlike global coordinates, the dimensionality of these
datasets is important. Each dataset must have the same
dimensions - which will correspond to the "i,j,k" dimensions
of EnSight...but in the opposite order.
HDF dimensions of [2][3][4] will correspond to i=4,j=3,k=2.
Usually, i/j/k corresponds to the number of nodes along the
x/y/z axis respectively.
When creating the values for the dataset, order along the
x-axis, then y-axis, then z-axis.
NOTE: for simple rectangular meshes, it is easier to use
the coordinates_axis_[xzy] form below.

If (coordinates_axis_x, coordinates_axis_y, coordinates_axis_z):
Each dataset contains the values of that component along that
axis. The coordinates are created from all combinations of
each component.
For example, suppose you have 4 values along the x-axis, 3
values along the y-axis, and 2 values along the z axis.
the datasets coordinates_axis_[xyz] will have 4, 3, and 2
values respectively.

o IO Package
- optimizations:
UPS_IO_Dataset_write() has always been a collective call (every
process must call is). Now, I tell HDF it is collective and
HDF is able to optimize its operations. This is used when
UPS_AA_Opt_set() is called setting UPS_IO_OPT_ACCESS_WRITE to

3 GETTING STARTED 26

UPS_IO_ACCESS_ALL_PE.

- new functions: UPS_IO_Ds_r_s, UPS_IO_Ds_w_s
These functions simplify the reading/writing of datasets
where each process has a single value. These functions simply
wrap more general UPS calls into 2 functions.

==========================
New UPS Version v-02-05-00
==========================

Machines Installed: nirvana, theta, lambda, chi, bluemountain, q

Please email ups-team@lanl.gov if you have any questions/comments
regarding the below changes.

Major Changes since v-02-04-00
==============================
o Tools
bin/ups_io_rm

Purpose:
=======
Remove an object (recursively) from an HDF file.
Due to current HDF limitations, ups_io_rm will leave
holes in the file. To ’reclaim’ this space, use ups_io_cp
to recursively copy the old file to a new file. This will
remove any holes.

Format:
ups_io_rm <file> <object> [options]

Options:
-a <attribute>: remove only the specified attribute
-f: do not error if object to remove does not exist
-v: verbose output (screen output and ups_log.txt file

created)
Examples:
========
- ups_io_rm foo.h5 /foo/pc/variables/per_element
Remove the ’/foo/pc/variables/per_element’ object
recursively in foo.h5.

- ups_io_rm foo.h5 . -a EnSight_model -v
Remove the ’EnSight_model’ attribute from the root
group in foo.h5 and be verbose about it.

Notes
=====
- Due to current HDF limitations, ups_io_rm will leave
holes in the file. To ’reclaim’ this space, use ups_io_cp
to recursively copy the old file to a new file. This will

3 GETTING STARTED 27

remove any holes.

bin/ups_io_diff.pl
Added RMS to output. I chose the "N-1" (sample) version:

sqrt(sum((value_1 - value_2)**2) / (N-1))

lib/libuserd-HDF
- Users may now set the environment variable LIBUSERD_HDF_VARIABLES.
This variable contains a comma delimited string of variables to
be used (all others will be ignored).

- Structured meshes can now be read. Any Part that has its own
coordinates is assumed to be a structured part. The dimension
size of the coordinates datasets ("coordinates_x", "coordinates_y",
"coordinates_z") specify the size of the structured part:

coordinates_x[3][4][5] --> 5 i nodes,
4 j nodes,
3 k nodes

In HDF, the last dimension is contiguous in memory. For example,
the position [1][2][3] is adjacent to [1][2][2] and [1][2][4].
EnSight uses "neighbor" nodes to draw its structured mesh.
So, the order of the coordinates is important if you want EnSight
to draw a pretty picture.

As an aside, one can have both structured parts (each part using
its own nodes) and unstructured parts (each part using the
same set of global nodes). This allows one to have "particles"
(and variables defined on those particles) by setting them as
structured parts with their own nodes.

See the README for more information.

- This reader now can be used on Q machines (compaq, hp, whatever
its called now) as well as SGI’s.

o GS package - UPS_GS_START_INDEX added to UPS_GS_Get_item call:
(int) The original start index for process 0.
This value can be obtained if given the my_start_index
argument (eg calling UPS_GS_Setup or UPS_GS_Setup_s_global).
As with UPS_GS_GLOBAL_INDICES, an artificial value of -1 will
be set if my_start_index was not given (UPS_GS_Setup_s_local).
Note that the items UPS_GS_GLOBAL_INDICES and
UPS_GS_INDICES_ACCESSED still return 0 based arrays.

o IO package - Major optimizations.

Writing a dataset that is distributed in a cyclic manner across
the processes can be very time consuming since each process is writing
to various parts of the file at the same time. I have added logic
to write data in a "smart" way. Master processes gather slave
processes data to form contiguous chunks of the dataset. They then

3 GETTING STARTED 28

write these contiguous chunks.

The performance increase is substantial. When using 8 processes
and each process has a 100X100X100 chunk of a 100X100X800 integer
dataset, there is a 20X speedup. I expect that when using more
processes or larger datasets, the speedup will be even greater.

The default access for writing is UPS_IO_ACCESS_IO_PE (the IO pe
does all the writing) which takes advantage of this data aggregation.
UPS_IO_ACCESS_SERIAL (which was added) also takes advantage of
this aggregation but has multiple master pes doing the writing.
UPS_IO_ACCESS_ALL_PE has every process write its own data.
NOTE: UPS_IO_ACCESS_IO_PE is a bad choice for poorly distributed data.

The above options can be set by calling:
UPS_AA_Opt_set(UPS_IO_OPT_ACCESS_WRITE, <access mode>);

o UT package
- UPS_UT_Get_name_or_value() also takes UPS_UT_GET_COUNT as an argument.
This returns the number of name/value pairs in the name_value struct.

- UPS_UT_Sort_compress()
Added function to sort and then compress (remove duplicate) an
array. The changes are done to the input buffer and an updated
count is returned. I needed this so I thought others might
benefit from it.

==========================
New UPS Version v-02-04-00
==========================

Machines Installed: nirvana, theta, lambda, chi, bluemountain
Directory: /usr/projects/ups/latest -> v-02-04-00

Please email ups-team@lanl.gov if you have any questions/comments
regarding the below changes.

Major Changes since v-02-03-01
==============================
o Tools
Tools built on top of UPS are now being written and distributed with UPS.
Documentation for these tools (and all UPS documentation) can be found
in doc/<tool>.

lib/libuserd-HDF.so
Purpose: create an EnSight reader that can read HDF files

For information, please see doc/files/README.libuserd-HDF.
The file example_mesh.h5 is an example mesh that can be read
with the reader.

3 GETTING STARTED 29

Included in the documentation directory is the reader code
libuserd-HDF.c and test_libuserd-HDF.c which give examples of how
to write and read a mesh.

bin/ups_io_cp
Purpose: copy object from one hdf file to another hdf file

Format:
ups_io_cp <from file> <from object> <to file> <to object> [options]

Options:
-R: recursive copy
-kfrom <sort dataset>: sorting key dataset of from dataset
-kto <sort dataset>: sorting key dataset of to dataset

if only one sort key dataset is specified, use the
same sort key dataset name for both.

-v: verbose output (screen output and ups_log.txt file
created).

Example:
- copy from file correct.h5 the group RHO

to file foo.00000.h5 renaming it RHO_correct
while sorting on dataset node_ids.
The copy is recursive and verbose.

ups_io_cp correct.h5 /foo/pc/variables/per_node/RHO
foo.00000.h5 /foo/pc/variables/per_node/RHO_correct
-kfrom /foo/pc/geometry/node_ids -R -v

bin/ups_io_diff.pl
Purpose: print differences between a dataset existing in two files.

Usage
=====

ups_io_diff.pl <file 1> <file 2> <datset>
[-l]
[-or]
[-k <sort key dataset>]
[-a <absolute tolerance>]
[-r <relative tolerance>]

-l
long output
Print information about each of the differences.

-k <sort key dataset>
Values of the datasets are to be compared by the key given in
this dataset. The sort key datasets for each file are checked
to make sure all keys in 1 dataset exist in the other dataset.

If the sort key dataset has a different number of items than

3 GETTING STARTED 30

the dataset, each sort key item will correspond to a consecutive
group of values of the dataset. For example, you can have a sort
key of the dataset "node_ids" with 10 items in it (10 nodes) and
the dataset you are diffing is "foo" which is a "10X3" dataset
(1 value per node with X, Y, and Z components).

-a <absolute tolerance>, -r <relative tolerance>
Values are said to be "the same" if the absolute/relative
difference is less than or equal to the absolute/relative
tolernace.

Both -a and -r flags can be specified at once.
If both -a and -r flags are specified,
a value is "the same" if it is within (less than or equal to)
both the absolute _and_ relative tolerances.
See the "-or" flag below.

Absolute Difference{[0,)} = abs(value1-value2)
Relative Difference{[0,1]} = abs(value1-value2)/

(abs(value1)+abs(value2))

-or
"or"
This flag changes the default behavior when given both absolute
and relative tolerances. With this flag,
a value is "the same" if it is within (less than or equal to)
either the absolute _or_ relative tolerances.

Return Value
============
If a difference is found, information is sent to the screen and
a -1 is returned.
If no differences, no output and 0 is returned.

Examples
========
1) Print difference info (short format) between 2 datasets:

ups_io_diff.pl example_mesh1.h5 example_mesh2.h5
"/EnSight_model/variables/per_node/UPS:N:scalar 0/unstructured"

2) Print difference info (long format) where the
absolute tolerance is 1e-8 _or_ relative toleralce is .1

(values same if within either absolute or rel tolerances)
(remove "-or" if you want values to be same if within both)

while keying on a sort key dataset
between 2 datasets:

ups_io_diff.pl example_mesh1.h5 example_mesh2.h5
"/EnSight_model/variables/per_node/UPS:N:vector 0/unstructured"
-l -k /EnSight_model/geometry/node_ids -a 1e-8 -r .1 -or

o UPS_DT_BOOL datatype:

3 GETTING STARTED 31

The datatype UPS_DT_BOOL has been removed....sort of.
I has just been setting this datatype to the same
as UPS_DT_INT4. When dealing with Fortran logicals, this
is true. However, C++ booleans are 4 bytes, but 1 byte.
So, this datatype is ambiguous/confusing. So, I have
removed it.

For those of you that were using UPS_DT_BOOL, replace
it with UPS_DT_INT4/UPS_DT_INT.

For machines I have been on, use UPS_DT_CHAR when dealing
with C++ booleans and use UPS_DT_INT4 when dealing
with Fortran logicals.

o Environment variables that affect UPS
UPS environment variables are now listed in 1 place - ups.h.
One can search for the work ’environment’ to find the enums that
list them.

- Environment variables supersede function calls made by the user.
This allows one to change behavior without needing to recompile
code.

- These variables are read during UPS_AA_Init() and are not reread.
So, modifying them during a run has no affect.

o Run Mode: parallel or serial
One can set the "run mode" for UPS runs.
Currently, this "run mode" dictates whether single pe runs should
still go through MPI or call the UPS serial code. See
UPS_AA_RUN_MODE_SERIAL for an explanation of how this could
possibly be useful.

Use UPS_AA_Opt_get/UPS_AA_Opt_set with UPS_AA_OPT_RUN_MODE.
These may only be set before calling UPS_AA_Init()
You may set the following as environmental variables as well:
(in mutually exclusive groups)

- setenv UPS_AA_RUN_MODE_PARALLEL
setenv UPS_AA_RUN_MODE_SERIAL

Remember that all environment variables must be propagated to
all the processes.

UPS_AA_RUN_MODE_PARALLEL=0, /* Default (must equal 0 to match init)
* This option causes the underlying
* communication protocol (eg MPI) to
* be called regardless of the number of
* processors being used. */

UPS_AA_RUN_MODE_SERIAL /* This option causes serial code (single
* process) to be called instead of the
* underlying communication protocol (eg MPI).
* UPS has the same functionality when running
* serial as it does running parallel with

3 GETTING STARTED 32

* one process.
* This option was added mainly for running
* with the HDF-EnSight reader which uses
* UPS IO routines but cannot run under MPI.
* There are other tools that also have this
* restriction. */

o Guides
The pdf flavors of the guides (UserGuide.pdf and DeveloperGuide.pdf)
now are hyperlinked....sort of. For some reason, some of the hyperlinks
miss the page they are pointing to by several pages. But, its close.
The hyperlinks will still list a page number so just page down several
pages to get to the correct page.

o Those building UPS from source - out of tree builds
To build out of tree (source in 1 location, binary files in another),
set the following environment variables:

UPS_PREFIX = absolute path to output directory
CONFIGURE_PL_DIROUT = set to UPS_PREFIX

Without setting these, the default is to build as before - in tree.
For more information, run ’configure.pl help’. One can also get other
info by running configure.pl without any arguments.

o UPS IO Package:
The user may now set their own file_id/group_id values.
The default is still to let UPS pick them for you.
This allows a more fortran-like approach.

This option is set with a call to UPS_AA_Opt_set() with
UPS_IO_OPT_LOC_ID_USERS set to UPS_DT_TRUE.

Users may now get the id used by the underlying protocol
with a call to UPS_IO_Loc_item_get with options
UPS_IO_LOC_ID_PROTOCOL and the loc_id obtained from a
UPS_IO_(File|Group)_open call (eg get the HDF file_id
given a UPS file_id).

o UPS IO Package: UPS_IO_INFO_DATATYPE_SIZE
UPS_IO_INFO_DATATYPE_SIZE was ill-defined for datatype of
UPS_DT_STRING. When getting information about a dataset or
attribute, one can call UPS_IO_Info_item_get with an argument
of UPS_IO_INFO_DATATYPE_SIZE to get the number of bytes in the
datatype. Previously, for UPS_DT_STRING, UPS_IO_INFO_DATATYPE_SIZE
would return the number of chars (same as UPS_IO_INFO_NITEMS).
Now, UPS_IO_INFO_DATATYPE_SIZE for UPS_DT_STRING will return the
number of bytes in a char (1).

To get the number of elements in a dataset or
attribute, use UPS_IO_INFO_NITEMS (local to the pe) or
UPS_IO_INFO_NITEMS_TOTAL (number of elements total). The
functionality of UPS_IO_INFO_NITEMS/NITEMS_TOTAL has not changed.

3 GETTING STARTED 33

o UPS IO Package: new open method
Added a new open method: UPS_IO_OPEN_READ_WRITE. Formerly,
there had only been UPS_IO_OPEN_CREATE (write a new file)
and UPS_IO_OPEN_READ (read a file). UPS_IO_OPEN_READ_WRITE
will open an existing file for read/write ability.

Checks are now made to make sure you are not doing things like
trying to write to a read-only file.

o UPS IO Package: UPS_IO_Info_create_self, UPS_IO_Rm
Want to get an info_id about a single object without having to
to through

UPS_IO_Filter_set
UPS_IO_Info_count
UPS_IO_Info_create
UPS_IO_Filter_set

Well, now you can! UPS_IO_Info_create_self can be used to
return a count (0 if object not found and 1 if it is) _and_
the info_id. This shortcut made my life bearable and it just
might make yours as well...

Also, With UPS_IO_Rm, there is now a way to remove specific objects
from a file.

o UPS IO Package: UPS_IO_Info_item_set with UPS_IO_INFO_DATA_TOTAL
When called with UPS_IO_Info_item_set, this modifies the info_id
obtained from a info create call so that the entire dataset will
be read in
This is a short curcuit of the following calls (that I was making
a thousand times and was starting to get annoying):

1- UPS_IO_Info_item_get: UPS_IO_INFO_DIMS_TOTAL
2- UPS_IO_Info_item_set: UPS_IO_INFO_DIMS
3- UPS_IO_Info_item_set: UPS_IO_INFO_STARTS

Remember, the default behavior is for each pe to read in only what it
wrote out. Use this option to UPS_IO_Info_item_set to read in the
whole dataset.

o UPS IO Package - file type
One can now get the file type (UPS_IO_PROTOCOL_HDF,
UPS_IO_PROTOCOL_UDM, ...) from the name of the file (the function
UPS_IO_File_type()) or a location id (the function
UPS_IO_Loc_item_get()). During read calls, UPS will detect the type
of the file and read it correctly.

o UPS IO Package - UPS_IO_Attr_write
Now, all processes must have the same arguments. Previously, only
the data on the io_pe was relevant. This was causing confusion
as to what arguments needed to be the same and which arguments could
be different.

3 GETTING STARTED 34

o UPS UT Package: UPS_UT_Checksum_get
Supply a buffer and a count...get back a "checksum" quantity.
Currently, only 64 bit CRC is supported. In the future, others
can be added.

o UT Package - UPS_UT_Dt_change()
One may now call this routine to change an input buffer of one
datatype to an output buffer of another datatype.
Only simple conversions (integer <--> float) are supported.
C assignment is done (eg float to integer is truncated and
overflow error might occur). So, one must use this carefully.

This is used in IO packages reading of attributes and datasets
if the read datatype does not match the file datatype.

==========================
New UPS Version v-02-03-01
==========================

Machines Installed: nirvana, theta, lambda, chi, bluemountain
Directory: /usr/projects/ups/latest -> v-02-03-01

Please email ups-team@lanl.gov if you have any questions/comments
regarding the below changes.

Major Changes since v-02-03-00
==============================
1) UPS_CM_Context_free:

This function has been added to allow users to free UPS resources
when done with a context set by UPS_CM_Set_context. As most users
do not have more than a few contexts, this call is not necessary.
However, we provide it for those users who wish to be especially
tidy.

2) UPS_IO_Attr_write_s:
One can now write an attribute specifying the size (ndims/dims) as
arguments. Previously, only single element attributes were
supported (eg 1 double). Now, you can write multi-dimensional
attributes using this new function.

3) UPS_IO_Info_item_get:
The datatype of UPS_IO_INFO_NAME_LENGTH (the length of a name) has
been changed from an int4 to an int8 to better match other
variables.

4) UPS_IO_Loc_item_get, UPS_IO_Loc_item_set:
These functions have been added to allow users to get/set
information related to a loc_id obtained from a call
to UPS_IO_File_open or UPS_IO_Group_open.

3 GETTING STARTED 35

This is similar to what can be done already with
UPS_IO_Info_item_get/set and info_ids obtained from
a call to UPS_IO_Info_create.

5) UPS_IO_Filter_get, UPS_IO_Filter_set:
One may now set a filter to the UPS_IO_Info_count/UPS_IO_Info_create
calls. The count/create calls are used, for example, to

count: tell me how many members a group has
create: give me the array of info ids for those members.

Previously, to see if a member existed, one would have to do the
following:

1) UPS_IO_Info_count --> n matches
2) create array of length n
3) UPS_IO_Info_create --> ids array of length n
3) for i = 1 to n
3.1) get name of ids[i]
3.2) if name matches, the member exists

Now, one can:
1) UPS_IO_Filter_set with name of member in question
2) UPS_IO_Info_count will return 0 (not found) or 1 (found)

To turn off the filter, call UPS_IO_Filter_set with a 0 length
string.

6) IO Datasets:
We now support up to 10 dimensional datasets (formerly had only supported
2-d). If you want more, just tell me.

Remember, the order of the data buffer to be written is along
the last dimension first (which is how it is layed out in memory).

Upon writing, a process now has the following ways to specify what
portion of the dataset it will write:

a) Default:
All dimensions except the first dimension (slowest
moving dimension in memory) are the same for every
process. The global dataset is written in processor
order.

b) UPS_IO_INFO_STARTS:
Each process specifies where its starting position in the
global array.

c) UPS_IO_INFO_PGRID_DIMS (and optionally UPS_IO_INFO_PGRID_ORDER)
Each process specifies how many processes are along each
dimension of the dataset. The default ordering is along
the last dimension first (just as the ordering of the data
in the dataset). This may be modified by specifying the
processor order with UPS_IO_INFO_PGRID_ORDER.

7) IO Package Sequential File Access:

3 GETTING STARTED 36

UPS-IO can now provide sequential-like file access. The goal
is to have PSFlib-like functionality.

Essentially we choose the names of datasets so you do not
have to. When calling UPS_IO_Dataset_write without a name argument,
a name is created with an internal count as part of the name.
This count is then incremented in preparation of the next write.
The same is done for reading.

Note, we encourage users to instead provide their own
names/structure to the file so that the file is more self
descriptive.

Please see UPS_IO_Dataset_read in the UserGuide
for example/discussion.

8) Write using n pes but read using m pes (m != n):
Previous behavior was to read in the whole dataset automatically if
the number of processes that wrote the dataset did not equal the
number of processes reading the dataset. This too easily lead to
user error. Now, if the number of processes do not match, you
must set UPS_IO_INFO_DIMS and UPS_IO_INFO_STARTS.

9) Serial UPS:
A pure serial version of UPS is now available. This version will
have the same functionality as running your code with 1 MPI process
except that MPI is not used at all. This might be useful when using
tools (eg insight) that do not work well with MPI.

Currently, this option of UPS will not be installed unless requested.

==========================
New UPS Version v-02-03-00
==========================

Machines Installed: nirvana, theta, lambda, chi, bluemountain
Directory: /usr/projects/ups/latest -> v-02-03-00

Major Changes since v-02-02-11
==============================
1) New IO package added:

UPS offers IO functionality based on Hierarchical Data Format
(HDF http://hdf.ncsa.uiuc.edu/HDF5). A file written with
HDF has a structure similar to a Unix directory structure (eg
HDF datasets/groups are similar to Unix files/directories
respectively).

UPS has functions written on top of HDF that simplify access
to the file.

3 GETTING STARTED 37

The file objects are:

o- groups - like Unix directories
o- datasets - like Unix files (arrays)

Currently, UPS has simplified the reading/writing of datasets
(arrays) by assuming that processes own consecutive contiguous
chunks of the dataset. All each process needs to specify is
the size of its chunk.
Please see UPS_IO_Dataset_read in the UserGuide for
example/discussion.

o- attributes - simple datasets attached to groups or datasets

These can be used to describe the object to which they are attached.

One can use the IO package functions to create self-descriptive
data files. One can also examine these files with command line
tools h5ls and h5dump which are installed in the UPS bin directory.

In the near(?) future, the UPS IO package will layer on top of
other packages (UDM - Unified Data Model) which will give
users access to greater functionality.

Note: The user must now link in libhdf5.a (which is located in the
UPS lib directory).

The IO reference section in the UserGuide
describes each function and has exquisite examples.

2) UPS_DP_Combiner functionality change:
The (max|min)loc operation had returned a location relative
to the masked array. Now, it returns a loc relative to the
entire array. User requested to do it this way. And it makes
sense to me that it would be more useful.

3) ups.h include statements and C interface routines:
A while back, I had removed the "include <mpi.h>" line from
master_ups.h (remember, master_ups.h gets converted to ups.h and
that file is included by users). However, the following functions
had arguments that were of MPI types:

UPS_CM_Get_context: MPI_Comm
UPS_CM_Set_context: MPI_Comm
UPS_CM_P_group_item: MPI_Comm
UPS_CM_Csend: MPI_Request
UPS_CM_Cwait: MPI_Request

Now, the actual argument were hidden by typedefs that were assigned
differently via #define code. ie:

typedef MPI_Comm UPS_CM_Context

3 GETTING STARTED 38

However, this required putting a "#include <mpi.h>" inside
master_ups.h and thus it would be visible to users including
ups.h.

I have not made a change so that the arguments of the functions
that were mpi datatypes are now pointers to void. This means
we now no longer have to have "#include <mpi.h>" in ups.h

So, what does this mean to the user interface? Well, very little
probably:

Fortran: no change
C: pass the address instead of the variable in question

UPS_CM_Set_context(comm) --> UPS_CM_Set_context(&comm);

C Users using the typedefs UPS_CM_Context/UPS_CM_Request can now
use the #defines UPS_DT_PROTOCOL_COMM_TYPE and
UPS_DT_PROTOCOL_REQUEST_TYPE. If they really do not want to know
the type of the argument they get from UPS_CM_Get_context, they
can call UPS_DT_Sizeof and get the size in bytes and just malloc
a chunk (mentioned in the comment headers of the affected
routines).

Fortran users are not affected by this because they have always
passed in int* to these routines. As a check, upsp_dt_init
now checks to assure that the size of an int equals the
actual size of the C flavor.

For the developer, since you are receiving a void*, you will
have to cast it before use: (UPS_DT_Protocol_comm*)comm.

4) UPS_UT_Get_name_or_value new function:
Added the function UPS_UT_Get_name_or_value. I had created this
when doing io work for another code team...and I thought it might be
useful in general. The user creates an array of
UPS_UT_Name_value_struct’s and passes that in with either a name or a
value. The function returns the value or name (respectively).

5) Move get/set io_pe routines from gs to aa component:
UPS_GS_Get_io_pe --> UPS_AA_Io_pe_get
UPS_GS_Set_io_pe --> UPS_AA_Io_pe_set

Formerly, the io_pe was used only by the GS package. Now, it is
also used by the IO package and in the future, might be used by
other packages. That is why I decided to move it to the AA (general)
package.

6) UPS_AA_Opt_get/UPS_AA_Opt_set functions added
These functions are used to get/set options that dictate how UPS
behaves during run-time. This will be where the user may set things
like buffer sizes, message aggregation techniques,
Take a look at the UserGuide for more information on the different
options available.

3 GETTING STARTED 39

7) New links in install directory for easier building
Currently, when linking to an installed UPS, the architecture dependent
directories (bin, include, lib) are located at:

latest/lib/SGI64_mpi/libups.a
latest/include/SGI64_mpi/ups.h

In other words, lib/<ARCH>.

I have added links so that you may now access architecture dependent
files by:

latest/lib/SGI64_mpi/libups.a
latest/include/SGI64_mpi/ups.h

-and-
latest/SGI64_mpi/lib/libups.a
latest/SGI64_mpi/include/ups.h

In other words, both lib/<ARCH> and <ARCH>/lib are now available via
soft links.

4 DIRECTORY STRUCTURE 40

4 Directory structure

Below is a chart of the directory structure...followed by a listing of file name conventions and mean-
ings.

Directories under UPS (directory|subdirectory|sub-subdirectory|. . .)
Makefile

aux hdf
other auxiliary directories

bin Architecture directories h5ls

configure.dat
configure local.dat
configure.pl

doc DeveloperGuide
UserGuide header2latex.pl
other Docs

include UPS.F
UPS CONST MOD.F
Architecture directories ups.h

upsf.h
upsf77.h
other user includes

master ups.h
sync f include.pl

lib Architecture directories libups.a

make.inc

peer review lmdm ToDo.lmdm
other developers peer review directories

script Parse file.pm
ups aa statistics plot.pl
other generic scripts

src aa ups aa init.c
ups aa terminate.c

gs UPSF GS MOD.F
UPSF GS SETUP.c
UPS GS SETUP.c
ups gs setup.c
ups gs setup f.F
ups gs setup f77.c
other user API files
upsp gs.h
utils upsp gs init.c

upsp gs terminate.c
utility files not seen by user

other UPS packages like aa, cm, dp, ...

testing gs fortran source for fortran gs tests
other tests for the gs package

other tests for UPS packages like aa, cm, dp, ...

tools EnSightReaders source for this tool
other tools

4 DIRECTORY STRUCTURE 41

file name conventions/descriptions
name meaning

[wW].pl perl script (configure.pl)
[wW].tex latex files (DeveloperGuide.tex)

(2l) directory pertaining to a package (cm)
(2l)i [w] directory containing internal package source (cmi mpi)

aux directory containing collaborator code
configure.dat top configure.dat = $(UPS PREFIX)/make.inc

configure local.dat local configure local.dat = $(DIR DSTDIR)/make local.inc
configure.pl perl script processing configure.dat creating the make.inc

doc directory containing userguides, conference reports, . . .
include location of user include files

internals contains architecture dependent directories for UPS packages
header2latex.pl creates latex reference pages from headers in ups (2l) [w].c files

libups.a user UPS library
make.inc Makefile include file generated by configure.pl
Makefile recursively builds whatever is needed at the current directory

master ups.h master C include file used to generate user include files
Parse file.pm Parses various file types and creates variables

script contains scripts that are or have been used
src directory containing UPS source

testing directory containing tests for the different UPS packages/APIs
UPS.F Used to generate UPS.mod (for fortran USE statement)

UPS.mod for fortran USE statement
UPSF (2L) MOD.c Contains names of the fortran modules

UPSF (2L) [W].c Fortran API created manually (UPSF CM ALLREDUCE.c)
UPS (2L) [W].c F77 API created manually (UPS CM ALLREDUCE.c)

UPS CONST MOD.F creates constant module USE’d by UPS.F
ups (2l) [w].c C API (ups cm send.c)

ups (2l) [w] f.F Fortran API created automatically (ups cm send f.F)
ups (2l) [w] f77.c F77 API created automatically (ups cm send f77.c)

ups aa statistics plot.pl Perl script that creates ps plots from ups log.txt output
ups.h user include file generated from master ups.h include file
upsf.h fortran version of the ups.h (generated from ups.h)

upsf77.h f77 version of the ups.h (generated from ups.h)
upsp (2l).h private include for API (upsp cm.h)

utils directory containing utility files
key

expression meaning
[] at least one occurrence
() single occurrence
(l) lower case letter

(L) upper case letter
(2l) 2 lower case letters

(2L) 2 upper case letters
[w] lower case letters, underscores, and/or numbers
[W] upper case letters, underscores, and/or numbers

[wW] lower/upper case letters, underscores, and/or numbers

4 DIRECTORY STRUCTURE 42

Listed below are more in depth explanations of directories/files.

4.1 Main UPS Directory

The two important text files in this directory are Makefile and configure.dat.

• Makefile

All major operations can be done from this level.

The most used options are:

– gmake

This builds the libraries, tests, and User/Developer Guides. Also, the tests will run and
you will be notified of their success/failure.

– gmake clean

This cleans all .o files.

– gmake clean compile

This cleans and also removes all libraries.

– gmake install dev

This installs the ups product for the general public.

– gmake help

Prints help message.

• configure.dat

This input file is used by configure.pl to create make.inc (which is included in all makefiles). To
change the options, edit this file and change the values defined by “CONFIGURE OPTIONS”.
To add new variables, simply add them to this file.

4.2 aux

This directory contains 3rd party software used by UPS. Some examples of this are:

• hdf

Hierarchical Data Format (file io product)

These libraries are built and either put directly into libups.a or kept in a separate library that
users explicitly link to when compiling their code.

4.3 doc

UPS documents are kept here. This includes UserGuide, DeveloperGuide, and conference papers
(like for SC99 and HPCU99).

4.4 include

The purpose of the include directory is to create the different include files needed by different
languages (specifically C, C++, Fortran, and Fortran-77).

At the top level, there is master ups.h from which all the other “.h” includes are generated.
This file contains enumerated types and prototypes to the user interface files written in C. Also, at
this level, there are the files UPS.F and UPS CONST MOD.F which create UPS.mod.

4 DIRECTORY STRUCTURE 43

All of the files (including the fortran source) are put here because they have the same pur-
pose...create user include files.

The “include” files are placed in subdirectories whose names represent different compile time
options.

• SGI64 mpi

compiled on the SGI, with 64 bit addressing.

4.5 lib

The libraries users need to use UPS are placed in subdirectories whose names represent different
compile time options.

• SGI64 mpi

compiled on the SGI, with 64 bit addressing.

4.6 peer review

This directory contains directories for each developer. Under those directories, developers maintain
their own personal ToDo lists. These lists serve as reminders for what the developer is doing/wants
to do in the future and serve to allow other team members to see what everyone is doing.

4.7 script

This directory contains scripts that have been used or are used. One important file in this directory
is Parse file.pm. This perl module parses various file types and creates variables. header2latex.pl,
create fortran interface.pl, create f77 interface.pl, sync f include.pl, and precommit.pl use this mod-
ule.

Another script (which is copied over during an install to allow user access) is
ups aa statistics plot.pl. This scripts takes the output file ups log.ps and uses gnuplot to create
postscript graphs.

4.8 src

The src directory contains the main part of UPS. This includes user interfaces (src/cm) and utility
code (src/cm/utils).

The user interface layer (eg src/cm) contains all the subroutines to which the user has access.
These routines contain code that is in general invariant on the architecture (eg SGI vs. Intel) or
the underlying communication (eg MPI or PVM). Minor differences may be #ifdef’d in these files.
Major differences (eg a new solver package) might require the creation of a new internals or utils
directory.

The user interface directory maintains consistent interfaces so that UPS may change underlying
protocols (eg MPI to PVM communication protocols) that are effectively invisible to the user.

For example, in the CM package we have pulled out all the MPI functions that are currently
used and placed them inside “core” routines:

UPS_CM_Send()--calls-> utils/upsp_cm_core_send()--calls-> MPI_Send()
|--calls-> pvm_send()
|--calls-> serial op

4 DIRECTORY STRUCTURE 44

When we switch from using MPI to PVM or serial, we only need to change the “core” functions
via #ifdefs. This allows minimal code changes for developers and no code modifications for users.

The following is an example of how an MPI internals directory might be built for the CM package
(as opposed to the current “core” method for insulating MPI calls).

UPS_CM_Send()--calls-> internals/cmi_mpi/upsi_cm_send()
|--calls-> internals/cmi_pvm/upsi_cm_send()
|--calls-> internals/cmi_serial/upsi_cm_send()

There might be several different internals (eg cmi pvm could denote a PVM version). Note that
there is a corresponding user interface “ups” file for every internal “upsi” file. The internals directory
contains protocol-specific versions of user interface files.

The correct protocol directory (cmi mpi/cmi pvm/cmi serial) is compiled via the make.inc Make-
file variable CM INTERNAL.

It is up to the developer to decide whether the code modifications for different protocols should
be handled in #ifdefs, core functions, or new internals. In general, try to minimize the amount of
code duplication so that changes do not have to be propagated across multiple files.

• Minor Changes –> #ifdef’s directly in user interface
UPS GS Distribute():
The tflop implementation of MPI Scatterv is broken in that all processes must have the counts
array instead of just the root pe. So, when on the tflop, #ifdef’d code bcast’s the counts array
first.

• Moderate Changes –> “core” utils functions
UPS CM Send() using the “core” method:
We use MPI calls in many places...however there is little difference between most of the MPI
calls we use and their PVM counterparts. So, we insulate the MPI/PVM/serial flavors in core
routines that are then called by UPS functions.

• Massive Changes –> new internals directory
UPS CM Send() using the “internals” method:
When the functionality is vastly different (or the resulting #ifdef’d code is too complex to
follow, a new internal should be created.

4.8.1 Automatic Generation of Interfaces

Where possible (eg easily automated), the Fortran and F77 interfaces are automatically generated
from the C interface comment header. The C comment header has several fields that specify what
is needed in the Fortran interface. See the beginning of the Reference section of the UserGuide for
details on what those fields must look like.

The script routines create fortran interface.c and create f77 interface.c are called as suffix rules
in make.inc to convert .c to f77.c and f.F files. The Makefile in the src/<package> contains the
variables:

• COBJS PROC - F77 autogenerated interface files

• FOBJS PROC - Fortran autogenerated interface files

Interfaces that cannot be autogenerated (eg some preprocessing of input data must be done),
should be listed under COBJS or FOBJS respectively.

• UPS CM ALLREDUCE.o - F77 interface file manually created

• UPSF CM ALLREDUCE.o - Fortran interface file manually created

4 DIRECTORY STRUCTURE 45

4.8.2 src User API

The following files are required for the aa package User API level:

User API Files: AA Package Only: src/aa
Example File Name Meaning
ups aa init.c User C/C++ interface file (initialization routine).

Accessed by user/developer functions.
ups aa terminate.c User C/C++ interface file (termination routine).

Accessed by user/developer functions.
ups aa <function>.c User C/C++ interface (other routines).

Accessed by user/developer functions.
UPS AA <FUNCTION>.c User F77 interface that could not be auto generated.

Accessed by user/developer functions.
UPSF AA <FUNCTION>.c User Fortran interface that could not be auto generated.

Accessed by user/developer functions.

The initialization and termination routines do the following:

• aa initialization routine - initialize all packages

• aa termination routine - terminate all packages

Only the aa package will have user-visible initialization/termination routines. Other packages
will have their init/terminate routines in their utils directory (eg src/cm/utils/upsp cm init.c).

The following files are required for other packages in general (cm used as an example):

User API Files: All Packages: src/cm example
Example File Name Meaning
upsp cm.h Private include visible to all UPS routines.

Accessed by developer functions.
Contains prototypes and general structures.
See below.

ups cm <function>.c User C/C++ interface (other routines).
Accessed by user/developer functions.

UPS CM <FUNCTION>.c User F77 interface that could not be auto generated.
Accessed by user/developer functions.

UPSF CM <FUNCTION>.c User Fortran interface that could not be auto generated.
Accessed by user/developer functions.

The include file upsp cm.h defines the struct upsp cm that contains variables that can be accessed
by any UPS routine. This structure must contain information about whether this package has been
initialized and which packages this package initialized. Other information may be included.

typedef struct {
int
host_numpes, /* number of pe’s per host */
host_penum, /* penumber wrt host */
initialized, /* if this package is initialized */
num_comms, /* number of communicators */
numhosts, /* number of hosts */
numpes, /* number of pes */
penum; /* penumber */

4 DIRECTORY STRUCTURE 46

UPS_CM_Comm *comms; /* communicators */

} ups_cm_globals;
UPS_EXTERN ups_cm_globals upsp_cm;

Some routines in the internals directory will be expected to modify these variables.
The include file upsp cm.h also includes the internals include file upsi cm.h (located in the

internals directory).

4.8.3 src internals

Only files that are dependent upon certain protocols (eg Architecture or underlying communication
methods) should be found in this layer. That is, some user interface files contain only information
that is protocol invariant. In this case, the user interface file does all the work and an internal file
is not needed.

The following files are required in each package’s internals directory (src/gs/internals/gsi mpi
is used as an example):

User API Files: gs/internals/gsi mpi example
Example File Name Meaning
upsi gs.h Internal include file included by upsp gs.h

(which is located in src/gs)
Accessed by internals functions.

upsi gs distribute.c File that has MPI calls.
Accessed by user C interface functions.

utils/upspi gs setup generic.c Private internal with no corresponding user interface.
Accessed by internals/user interface functions.

The include file upsi gs.h may contain information that is accessible to other UPS routines.
The variables should be in an equivalent form as the struct described in upsp cm (page 45) above
except the struct should have the name, for example, upspi cm (which represents that it is a private
internal).

Even if the internal has no information it wishes to share, the include file must exist. This is
so that upsp gs.h can automatically include upsi gs.h which might be needed for other internals (eg
gsi pvm).

All files include ups.h and ups aa.h in order to include all global variables accessible to UPS
routines (in order to have access or modify these variables).

Internals directories are named (with cm as an example):

• cmi mpi (MPI communication protocol)

• cmi pvm (PVM communication protocol)

• cmi serial (Serial code).

4.8.4 src utils

As mentioned earlier in the “src User API” section, the aa package has user accessible init/terminate
routines. These aa routines init/terminate all the packages. Other packages have init/terminate
routines in their prospective utils directories (eg src/cm/utils/upsp cm init.c) which are called by
the init/terminate routines in the aa package.

The utils directory contains files that can be called from other packages but are not meant to be
called directly by the user.

4 DIRECTORY STRUCTURE 47

4.9 testing

The testing directory contains code that tests all of UPS. This includes testing all functions for
correct functionality, stressing functions, and simulating incorrect use.

Each packages has its own subdirectory under testing. Under that level, subdirectories named
after specific types of usage are found. The directories containing tests are specifiec in configure.dat,

Although the tester may print out a variety of information (eg timings), the final output must
assign a pass/fail rating in the following format.

===
Passed c xtest_cm passed
===

This format allows for automatic post-process of the output from all package testing.
It is preferable to keep output messages sent to the screen to a minimum. This way, errror

messages are easily seen. For example, timing information should be sent to an output file.

4.10 tools

The tools directory contains tools built upon UPS. For example, EnSightReaders is a user defined
EnSight reader built upon UPS IO. In general, the source for each tool is small. The source,
documentation, and tests are all in one directory.

When adding a tool, just mimic what is done in the other tools.

5 PROGRAMMING PRACTICES 48

5 Programming Practices

Sharing consistent programming practices between developers saves time. UPS source is written in
a style such that any developer can add code in a way that is similar to existing code. The following
guidelines are followed.

5.1 Variable Name conventions

Just like the names of files and directories, variables follow a convention.

Variable Name Conventions3

type convention example
General Names

Public ups ups cm x
Private upsp upsp cm x
Internal upsi upsi cm x
Private Internal upspi upspi cm x

Makefile
Variable definitions [W] CFLAGS
Non-existent targets [w] all

C/Perl Source (F77 API written in C)
Variable definitions [w] num flags
C Subroutine API Names UPS (2L) (L)[w] UPS CM Send
F77 Subroutine API Names #define’d to be lower case and UPS CM SEND =

have correct underscores ups cm send
C Subroutine Internal Names upsi (2l) [w] upsi cm send
User Enumerated Definitions UPS (L)[w] enum UPS Error enum
User Enumerated Values UPS [W] UPS ERROR AA INIT
Package Private Data Structure upsp (2l) upsp cm

Fortran Source (F77 API written in C - see above)
Variable Definitions [w] num flags
Fortran Subroutine API Names UPSF (2L) [W] UPSF CM SEND
User Parameter Variables UPS [W] UPS ERROR AA INIT

Preprocessor
Variable definitions [W] MAX TESTS
#ifdef Variables [W] USE HBP

5.2 Style

Style represents the general look of source. Whitespace is important for code readability (and to
allow for comments). Comments allow for other developers (or even the original coder) to look at
the code and quickly understand its purpose.

Xemacs [5] and the GNU Coding Standards [4] provide the basis for formatting.
Discussed below are spacing and comments.

3See the key in Directory Structure (section 4) for an explanation of the metacharacters.

5 PROGRAMMING PRACTICES 49

5.2.1 Spacing

Spacing Conventions
Situation Convention
indentation use xemacs and hit the tab key
{ and } go on lines by themselves
arguments in function definitions and prototypes go on lines by themselves
lists (ie enumerated values) go on lines by themselves.

try to line items up vertically
blank lines use whenever whitespace is necessary

5.2.2 Comments

All code (including C, Fortran, Perl, Makefile) should have extensive comments.

General Comment Form
inline

c /* comment here */
Fortran ! comment here
Make and Perl # comment here

comment block
c /* ------------ */ 4

/* comment here */
/* ------------ */

Fortran !<spacing>------------
!<spacing>comment here
!<spacing>------------

Make and Perl # ------------
comment here

Comments may be placed anywhere to improve clarity...but there are several instances where
comments are required.

4’-’ may be replaced with ’.’ or ’=’ for lesser/greater emphasis respectively

5 PROGRAMMING PRACTICES 50

See the appendix (A) for an example of the following.

Required Comment Areas
situation required comment

Programming Language
Beginning of source file Comment headers need to contain information like

name, purpose, argument descriptions, return
values, discussion, examples, ...
This is to give the reader a general feel for the
purpose of the routine.

Local variable declarations The reason why variable declarations are placed on
lines by themselves is so inline comments can fit
to the right of the variable. Try to keep the
comment length to just that line.

Executable Statements Signals the start of the code.

Beginning of code blocks Code blocks must start with a comment block
describing what the code will do.

End of code blocks Code blocks must also end with a comment block
describing what has just been accomplished. This
is done so that when editing, the developer does
not have to scroll to the beginning of the code block
to see what was done.

End of source file For completeness.
Makefile

Beginning of source file Write a brief description of the purpose of the
Makefile.
Also, include one-line descriptions of the targets.

Variable declarations Write a brief inline comment to the right of any
variables

Before target/dependency line Write a brief description of the purpose of the
target/dependency

5.2.3 Common Functionality

All routines need to have common functionality in addition to the purpose of the routine.

5 PROGRAMMING PRACTICES 51

Common Functionality
situation description

src (C, Fortran ...) code
Error checks All functions return an error code...and this error code is checked.

If an error occurs, a message is printed and an error code is again
passed up the calling chain. In this way, errors are passed all the
way up to the top of the calling sequence.

Initialization All UPS packages contain init routines.
User accessible routines are in the aa package.
Other packages have their routines in the utils directory.
C interface routines check for package initialization.

Argument Values Where possible, test input arguments for validity. For example,
always have default statements in switch statements
for bad input values.

Makefile see Appendix A.1
Shell Scripting The default shell is Bourne Shell

Standard Targets A Makefile’s first target is ’all’. This target is used for building
whatever is required in that directory. The target ’clean’ will
remove any temporary files.

Recursion Targets requiring targets from subdirectories will execute Makefile’s
in those subdirectories.

Error Checks Commands are checked for success and error messages are printed
for failures.

Non-Verbose Commands are kept silent (but with appropriate echo’s) so that
errors (such as compilation errors) are easily visible.

5.3 Memory Allocation

Use UPS UT Sm malloc when allocating shared memory and UPSP UT MEM MALLOC (or the other flavor
of alloc macros defined in upsp ut.h) when allocating normal memory.

See the reference pages for UPS UT Mem get item for a discussion of issues such as Performance
Penalty.

5.4 Error Checking

Use the UPSP ER ASSERT macro defined in upsp er.h when testing for error conditions.

5.5 Environment Variables

Environment variables should be read in the ut package - upsp ut init(). Values should then be
stored into the upsp ut private struct. Then, other packages may use this struct to get values.

The exception to this is upsp er init() - which gets called before upsp ut init().
For now, mention pertinent environment variables in the “Variables” section of the comment

header of the function. This might become cumbersome in that users will want a single page where
all environment variables are listed. So, it might have to be changed in the future.

6 PORTING 52

6 Porting

All good things must come to an end...eventually we’ll have to port UPS to a new machine. This
chapter contains information on what was needed to port UPS to different architectures. Having a
history of the problems encountered in the past will show generic areas that probably have to be
addressed during the current port.

6.1 Necessary Modifications

Some information cannot be determined prior to actual testing. Where possible, code should be
designed to “break” when manual modifications must be made. For example, C source code might
contain the following ifdef’d code:

#if defined (_SGI)
constant = 8;
#elif defined (_TFLOP)
constant = 7;
#else
compiler error. you need to fine the correct types for this machine
#endif

So, when compiling on a new machine, the compiler will see a line it recognizes as invalid and
produce an error.

The following files must be modified when doing a port to any machine:

• configure.dat

Machine specific variable values must be edited. Go down through the file and make sure all
the variables definitions make sense. New definitions for the architecture might need to be
added.

• configure.pl

The architecture option is predefined from this script. A “uname” is done and the variable
“option” is set. Use the code for previous architectures as an example.

• doc/DeveloperGuide/ups dg porting.tex

Edit this file and add the new subsection dealing with this port.

• src/cm/utils/upsp cm init.c

Default optimization parameters are set to work for most cases. Architecture dependant
changes can be set here.

• Compiling with gcc

On many machines, make sure you have the correct modules loaded so that the correct gcc
(and all other path-like variables) are being pointed to.

One might have to set MPI ROOT to point to the correct area.

• MPI cleaning

Some system V machines tend to leave garbage MPI files if MPI does not exit properly. The
location/existence of the following executables will vary:

– mpiclean: cleans temp files

– cleanipcs: cleans temp files

6 PORTING 53

– ipcrm: another option to clean temp files
– ipcs: lists temp files

/net/rogun/vol/proj/psp/installed/mahi/default/sbin/cleanipcs (comes with mpich/sbin lo-
cation...

• long and long long: Dealing with i8

We need to deal with i8 from our Fortran users. When compiling 64 bit, an i8 is the same as a
C long. This is standard-compliant and thus easy to deal with. When compiling 32 bit, things
get a little sticky...

So, we are forced to use the following non-standardized items:

– C datatype long long
We expect a C long long to be the same as an i8. The compile will fail if “long long” does
not exist. We also test for the size to match that of an i8.

– MPI datatype MPI LONG LONG INT
This is in the MPI-2 standard...but not in MPI-1. Compiles that need it that do not have
will fail.

The following files deal with this issue:

– configure.dat
Set CM DEFINES to -D USE PROTOCOL LONG LONG if the arch has
MPI LONG LONG INT and it is needed (32 bit addressing).

– include/master ups.h
UPS DT Datatype enum
∗ 32 bit addressing

long == long long == i8
∗ 64 bit addressing

long != (long long == i8)
– src/dt/utils/upsp dt init.c

Assign the size of “long long” and test for expected sizes.
– src/ut/ups ut convert.c

Convert to/from MPI LONG LONG INT if USE PROTOCOL LONG LONG is defined
(configure.dat).

– testing/dt/fortran/test sizeof.F
Test sizes of ups datatypes corresponding to r4,r8,i4,i8 to make sure they are correct sizes.

6.2 Porting to SGI

We started on this machine5 ...so perhaps we should call this section “Developing on the SGI”.
Beyond that, we’ve ported UPS to an Irix64-bsaed dual-processor workstation. We note that

workstation configurations within the context of a given vendor vary; therefore our experiences here
may simply serve as a starting point. That said, the module system used by SGI greatly simplifies
the work, and thus we simply list the differences in the “problems” section below.

• Help

consult@lanl.gov 505-665-4444
http://www.lanl.gov/asci/bluemtn

5Specifically, the ASCI cluster of SMPs running under the Irix64 operating system

6 PORTING 54

6.2.1 Running on Nirvana and Blue Mountain

1. Getting on the Machine

Go to the above website and get an account on the open theta.lanl.gov
or nirvana.acl.lanl.gov/serenity.acl.lanl.gov machines. Use ssh to get onto any of the above
front ends.

From there, you’ll need to use LSF (Load Fharing Facility) to get onto an interactive queue
(for compiling and running). You cannot compile or run in the front ends. Type in

theta: bsub -n 4 -q threadq -Is tcsh -l
serenity/nirvana: bsub -n 4 -Is tcsh -l

On theta, the threadq does not limit the number of processes you can have (our Makefile
system creates many sleeping processes). The other front ends do not have this problem. In
any case, this gets you 4 processes.

2. Setting up the Environment

The SGI uses “modules” to define your environment (eg path). I have the following in my
.cshrc:

if (-f /opt/modules/modules/init/csh) then
source /opt/modules/modules/init/csh

endif
if (-f /opt/modules/modules/modulefiles/modules) then

module load modules
endif
if (-f /opt/modulefiles/MIPSpro_default) then

module load MIPSpro_default
endif
if (-f /opt/modulefiles/mpt_default) then

module load mpt_default
endif

This sets which compiler (just use cc/f90) and MPI you will be using. In fact, you have to
do have this on in your .cshrc in order to ensure you have the correct environment when mpi
executables get spawned to other machines.

3. Runing with MPI

After you have bsub’d onto a compute node, you can just type in

mpirun ./<exectuable>

This will run the executable on 4 processes.

4. Debugging

To debug an MPI code, type in:

totalview mpirun -a ./<exectuable>

Use the middle mouse button to get options.

6 PORTING 55

6.2.2 Running on SGI workstations

6.2.3 Problems on SGI

• theta front end and threadq

As mentioned above, you have to use the threadq when compiling on theta. Our Makefile
system creates many sleeping processes and overruns the process limit set for the normal
interactive queue.

• MPI buffer limits

We needed to do special things (message chunking, flow control) in order to get MPI not to
crash when stressing the system.

• default vs. i8/r8

When compiling using non-default integer sizes, you have to explicitly type constants so that
they can be sent into UPS calls. Otherwise, f90 complains about it’s inability to find a match
when you call the UPS fortran interface.

• Optimized Compiler

We cannot use the optimal compiler settings because they are incompatible from compiler
version to compiler version. Must use just -O3.

• Number of processors

In order to check some particular functionality, UPS tests create four parallel processes. If
the computer has fewer than four processors, multithreading will be employed. This has
the drawback of imposing some artificial synchronization which may mask runtime problems.
Therefore, further testing using the number of available processes (less than four) should be
done.

• mpt default vs mpt latest with multiple communicators

It turns out that mpt default has a bug that causes comm split/dup calls to fail when running
on more than 4 boxs. As UPS creates comms, ups will fail on more than 4 boxs unless using
mpt latest.

You’ll have to set MPI GROUP MAX to something higer than its default of 32 (say 128).

6.3 Porting to TFLOP

This was our first port...

• Help

pfay@lanl.gov (helpful expert on the RED machines)
http://www.sandia.gov/ASCI/Red/usage/

6.3.1 Running on TFLOP

1. Getting on the Machine

Go to the above website and get an account.

To compile, you need to get to sasn100.

ssh sasn100.sandia.gov -l <username>@lanl.gov

6 PORTING 56

To run, you need to get to janus.

ssh janus.sandia.gov -l <username>@lanl.gov

2. Setting up the Environment

I copied Pat Fay’s (pfay) .cshrc (at least the part that defines path type stuff) and that seems
to work for me.

You’ll use cicc/cif90 to compile your codes.

3. Runing with MPI

To run, you have to be on janus (see above).

yod -sz 4 ./<exectuable>

This will run the executable on 4 processes.

4. Debugging

To debug an MPI code, type in:

debug -sz 4 ./<exectuable>

This is a text debugger...kinda yucky till you get used to it (at least, so I’ve been told...I’m
not used to it yet). I believe the web page has some pointers about it.

6.3.2 Problems on TFLOP

• MPI Communicator types

On other implementations of MPI, the communicator is just an integer handle. On the tflop,
it is a pointer to a struct. Fortunately, communicators gotten from fortran and from C point
to the same thing which make our routines work correctly.

• MPI Scatterv

Every pe needs to know how many elements each pe is getting (in blatant disregard to the
MPI1.1+ standard). So, I need to bcast that info out to every pe first.

• usleep

Doesn’t have it...so had to write our own using sleep. So, our minimum sleep time is 1 second.
This is ok for us since this goes in our barrier idle call which sleeps for long periods of time.

• mpif90.h

The file in /usr/lib (or wherever the standard is) is written in fixed form. You can write
one that satifies both fixed and free form easily...however, intel won’t do it. Why? dunno.
Fortunately, Pat Fay has one so we just include his.

Also, the mpi parameters are in common blocks as opposed to being parameterized. So, needed
to use equivalence instead of just setting parameters in testing/??/fortran/test params.F.

In a recent(Oct 20, 2001) development, looks like Intel has “fixed” mpif.h. “fixed” because
although it does work with fixed/free form, it does not work with -i8. They need to specify
KIND=kind(1 4) integer sizes instead of default. So, currently linking to one in my home
directory...ugh.

6 PORTING 57

• Fortran mod files

This machine needs all the .mod files when compiling. Made a change so that every .mod file
is moved over to the include directory.

• default vs. i8/r8

Again, had to be careful when dealing with non-default integer sizes (like on the SGI).

6.4 Porting to Linux:naxos

Although we can now say “we have ported to linux”...that means less than it sounds like. We
should really say “we have ported to one particular linux environment”. When we port to a major
unix architecture, we can feel pretty safe in assuming that certain tools will be consistently used on
different machines of the same architecture. For example, on the SGI most people will be using the
vendor supplied compilers and mpi. However, users on different linux boxes will probably be using
differnent tools - which means different flags and behavior.

This will talk about porting to the linux box “naxos.lanl.gov” using the following tools:

• gcc

• Fujitsu F90

• mpich

The settings in configure.dat will probably have to change if we port to another linux box. We’ll
deal with that when we have to.

• Help

As there is no one linux box, there is no single source for help. Try and find the person(s)
who are using the tools and get them to tell you what they are doing. I talked to a couple of
people (one for system stuff - Michelle Murillo:msqrd@lanl.gov and one for running mpi jobs
- Tom Evans:tme@lanl.gov).

6.4.1 Running on Linux:naxos

1. Getting on the Machine

Talk to Michelle and get an account. Then use your crypto-card to ssh over to naxos.

2. Setting up the Environment

The default shell is bash2...deal with it. It is similar to tcsh...the big difference is how you
define aliases/environment variables. I have the following .bashrc (which you have to manually
source when you first get on the machine):

The default location UPS looks for mpich stuff is correct on naxos. You might need to “setenv
MPI ROOT” to some other location if mpich is located somewhere else.

.bashrc
User specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

6 PORTING 58

export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/FFC/lib
export PATH=/usr/local/tv4.1/totalview.4.1.0-3/linux-x86/bin:${PATH}
export PATH=/usr/local/bin:.:${PATH}
export XT_ARGS="-C -fn fixed -cu -j -rw -aw -s -sb -si -sk -sl 20000"

alias ls="ls --color"
alias la="ls -la --color"
alias rm="rm -i"
alias new="xterm $XT_ARGS -geometry 100x36 -e ssh-agent $SHELL"

$(dollar not in .bashrc - needed for xemacs editing of this file)

The first time you get onto naxos, you need to do some ssh stuff in order to get mpich to work
via ssh.

(a) ssh-keygen
Enter your password

(b) cp .ssh/identity.pub .ssh/authorized keys

After you ssh onto naxos (and “source .bashrc”) you should use the alias “new” to get xterms.
On the first xterm gotten by “new”, you have to type in “ssh-add” and enter your password.

Now, things are ready to go (simple, eh?).

3. Runing with MPI

With the above taken care of, this is pretty simple.

Just mpirun -np <number of pes> <executable>.

4. Debugging

Hahahah <tears streaming from eyes>...that is a good one! mpirun actually has some built in
options for running under debuggers (type in “mpirun -h” for how to do this). The problem
is that they don’t work very well (at all?) when running fortran code. As all of our testers are
in fortran...this leaves you with print statements.

Serial (no mpirun) code can be debugged with totalview...for what that is worth.

6.4.2 Problems on Linux:naxos

• Lack of a Parallel Fortran Debugger

With a good debugger, the port would have taken an afternoon instead of days.

• MPICH vs Vendor MPI

MPICH strictly followed the standard for MPI Init. You cannot pass null args to MPI Init.
So, our hack was to call the fortran-77 interface MPI INIT if the user doesn’t pass the calling
args to UPS AA INIT.

Also, other architectures have a better MPI Abort where it actually does try and kill the other
mpi processes.

• echo vs echo -e

In order to simulate the behavior of echo on other architectures, we have to use “echo -e”
instead of just “echo” on linux.

6 PORTING 59

• Fujitsu Fortran Compiler

When passing the same argument multiple times to a function, this compiler made copies
before sending them to our Fortran interface. This caused problems when we were testing
for “same argument” by testing if the memory addresses were the same. So, had to fool the
compiler by using the Fortran-77 interface and sending in the first element instead of the whole
array.

• gcc

NULL is defined as a pointer to the address 0. So, the comiler complained when we were using
it as an integer. So, had to change those places from NULL to 0.

• major bugs found

The port did find some good bugs. Many places where the fortran intent was incorrect in the
C comment header (which is used to generate the fortran interface). A lot of unused variables
were found. Removed buggy special 1pe cases for several routines.

• POSIX

On one flavor of gcc, POSIX SHARED MEMORY OBJECTS was defined yet the posix
shared memory calls failed. This is a blatant disregard of the standard. Needed to add code
that says “Use shared memory if the p group is not UPS CM P GROUP SELF”. Then we
became more careful how the p group gets defined in UPS CM Sm get item. (emu.lanl.gov)

• rand() vs RANDOM NUMBER

Got a seg fault when using the f77 rand/irand. Now, use the f90 RANDOM NUMBER.

• argument not used still must not be null

I had a test where a process was not reading anything (number of items to read is set to 0).
So, it didn’t allocate any space and sent that to the fortran call UPSF IO Dataset read.

Although this worked on other archs, it caused a core dump in linux. Seems that at least
some space must be allocated. So, I init the buffer to -1’s and make sure the values remain
unchanged upon return.

Although this still tests that no values in the buffer change, I am still disturbed that one must
pass in a ”allocated” address to the fortran routines.

6.5 Porting to Linux:lambda

lambda is a linux cluster on the open. It has been worked to look similar to the SGI clusters
here...which is nice. So, it has modules, compilers, and totalview! Thus life is a lot easier.

• Help

So, as this is a production cluster, you can email consult@lanl.gov.

6.5.1 Running on Linux:lambda

1. Getting on the Machine

“ssh lambda” then “llogin -n 4” to get onto compute nodes with 4 processes.

2. Setting up the Environment

I have the following modules set:

• modules

6 PORTING 60

• gcc 3.0.4

• LaheyFortran95Pro 6.1

• mpich 1.2.3.absoft-7.5

• totalview.5.0.0 4

The tricky part is making sure your mpich sets fortran symbols correctly (mpi init as opposed
to MPI INIT/ mpi init/...).

3. HDF GB size file test

When running the parallel hdf tests on lambda, the “GB size file test” fails. I’ve contacted
HDF and they are looking into it. Unfortunately, this bug causes a hang when running more
than 1 pe. So, HDF tests run in effective serial mode. UPS tests are in parallel and test how
users run the code...so that should be ok...

4. Runing with MPI

One needs to use mpijob to run code on lambda. The format is just like mpirun, but you put
mpijob in front. This is integrated into LSF similarily to theta:

• mpijob mpirun exec

runs exec on the number of processors you got (4 if llogin -n 4)

• mpijob mpirun -np 2 exec

runs exec on 2 processes

There are probably other flags (like ptile) you can set.

To run in batch mode, I get onto a compute node and then bsub from there: bsub -n 16
mpijob mpirun <executable>.

5. Debugging

As there is totalview on this machine, just add the -tv flag to mpijob+mpirun command.

mpijob mpirun [args to mpirun] -tv [program] [args to program]

6.5.2 Problems on Linux:lambda

• Clean up

To clean up ipcs stuff, run UPS/script/ipcclean.pl [username]. This cleans up only the
box you are on - but does not kill runaway execs.

I wrote a script that wraps ipcclean.pl and killall called UPS/script/cleanmachines.sh. This
ipccleans and killalls the most likely execs.

• linux:naxos

A lot of the same probles on naxos apply on lambda. The port to naxos first made this simple.

• IO file syncing system

Two things need to be sync’d so all processes have the correct state: mkdir and the file write.
I solve this in the file open-read by doing a ls on the directory then doing a tail of the file. On
the open write, I just make sure that every process does the mkdir command.

• common scratch

/scratch is common to 2 pe’s. You can do /n/l4/scratch stuff, or use /netscratch/username
(which is visable on all boxes)

6 PORTING 61

• P4 GLOBMEMSIZE - not enough memory

I set the following in my .cshrc

setenv P4_GLOBMEMSIZE 20000000

The default value is too small...so I just set it to something huge. This is probably bad if
running on a bunch of processes so it will have to be tuned if that happens.

• Using FC intel mpich needs iargc /getarg

I needed to add -lPEPCF90 to the libs to create fortran execs.

6.6 Porting to Linux:intel1/bengal

These are new/experimental 64 bit linux clusters. They are not production machines...and you can
tell. No modules, no mpi, old compilers, ...

• Help

Yeah....right... Apparently, the sys admins are spoole@lanl.gov and parks@lanl.gov. I do not
know if these are the correct people to contact. I get the feeling these machines are not really
supported.

6.6.1 Running on Linux:intel1/bengal

1. Getting on the Machine

You must go through a machine named ccn5temp4 to get to these.

Once you can get on once, you can do some funky ssh stuff so you do not have to type in
passwords...

localhost % ssh-keygen -t rsa
localhost % cd .ssh
localhost % echo "ForwardAgent yes" >> config
localhost % scp id_rsa.pub ccn5temp4:~/.ssh/authorized_keys
localhost % scp config ccn5temp4:~/.ssh
localhost % ssh ccn5temp4
ccn5temp4 % ssh-keygen -t rsa
ccn5temp4 % scp id_rsa.pub bengal:~/.ssh/authorized_keys2
ccn5temp4 % scp id_rsa.pub intel1:~/.ssh/authorized_keys

Permissions on .ssh files/directories must be for owner only (700/600).

After this, you should be able to do the following from localhost:

localhost % ssh -X -t ccn5temp4 ssh -X bengal
localhost % ssh -X -t ccn5temp4 ssh -X intel1

2. Setting up the Environment

Well, there are no modules....some stuff is in the typical place (/usr/bin). The fortran compiler
on intel is in /usr/pgi/linux86-64/1.1/bin. Apparently, there might be other packages scattered
around at the “/” level (eg /opt/intel/... for mpich).

6 PORTING 62

3. Runing with MPI

I have not done this yet. Apparently there is the problem with mpich being broken with its
fortran symbols having two underscores. They need to rebuild mpich with one underscore.

4. Debugging

I know of no debugger on these systems...printf.

6.6.2 Problems on Linux:intel1/bengal

• Limited UPS build

I have only built serial no-fortran UPS. This seems to work...

• Probably the same stuff as other linux machines...

• Using FC intel mpich needs iargc /getarg

I needed to add -lPEPCF90 to the libs to create fortran execs.

• 64 bit compilation and LD PRELOAD

Although not available currently on lambda, it is on some experimental clusters (eg intel1).
LD PRELOAD is an environment variable that specifies libraries to be preloaded. It works
fine for 32 bit compilation. For 64 bit compilation, it will fail (some error about not being able
to find the 64 bit lib).

When I try and manually load in the library (include it in the compile line), I get a segv....So,
this does not work for 64 bit compilations.

• pgf90

The version I am using is ancient (1.1-1) so the following might not apply... I cannot use the
-Mchkfpstk compiler warning flag because I get an error about missing symbol chk stk top.

When I try and run Fortran tests, I get a segv. C-only tests pass...

• pgcc

The version I am using is ancient (1.1-1) so the following might not apply... I get an internal
compiler error when compiling with this. Objects are created and I can link, but programs
segv...

6.7 Porting to Compaq Q - Alpha/HP/OSF

The Q system is currently in a state of flux (things are fubar if you ask me). So, the hurdles needed
to be passed might disappear in the future - I hope so.

• Help

consult@lanl.gov 505-665-4444

6.7.1 Running on Compaq Q

They (whoever “they” is) is trying to get the Q system to be just like SGI ASCI Blue (mentioned
above). The process is getting to be the same...but at this time is a poor mix of Compaq and SGI
standards.

6 PORTING 63

1. Getting on the Machine

Like the SGI, you get onto a front end (qalphafe, qidfe, c00, or some other front end) and the
“bsub” onto the queue you want.

Right now, “bsub” is “idlogin”. Make sure you get enough processes (4) to run the tests. As
of now on the qalphafe machine, you have to:

idlogin -N 1 n 4 large

Now, this shuts everyone else out of the large partition (2/3 of the machine). So, I would
compile first with:

idlogin -n 1

and then try and run the tests after doing the larger idlogin command.

For other alpha machines, you can try llogin and bsub and see what happens.

2. Setting up the Environment

They are setting up modules like on the SGI.

3. Runing with MPI

Currently, you need to type in:

prun -n 4 -N 1 ./<executable>

Other alphas might use dmpirun....

Now, you have requested 4 processes (-n 4) on 1 box (-N 1). If you haven’t gotten those
resources from your idlogin command, this command will fail (something about insufficient
resources).

I needed to change the run command in configure.dat to run on a smaller number of processes
in order to get things to run.

4. Debugging

Totalview is there like on the SGI. Just replace “mpirun” with “prun” on the totalview line.

6.7.2 Problems on Compaq Q

• State of Flux

They are still trying to get the Q machines to have the look/feel of the SGI. Try the SGI
commands to do things and if that fails, flounder some more and ask the consultant.

• Division by O and timers

Some MPI calls were so fast that the timers were returning a time of 0. So, if you divide by
the time to do an operation, you get a division by 0 error. I needed to change the code to
check for 0 time before doing a division.

6 PORTING 64

• Compiler options on cc and f90 differ substantially

configure.dat made the assumption that compiler options for the different languages will es-
sentially be the same. This is not the case for the Compaq. I needed to modify configure.dat
to have the ability for different options depending on language. This is probably a good thing
since we might have a machine in the future that we wish to compile under different compilers
(eg gcc and the vendor supplied compiler).

• gcc:MPI ROOT

Often, native compilers will know where to pick up mpi lib/inc. When using gcc, one can set
MPI ROOT to point to the correct place.

• gcc:stat

Currently (2002/06/19), the gcc3.2.1 fails on linking source that had stat() calls - but gcc3.0.4
does not. Hopefully, the a patched version of gcc gets out some time. This problem does not
appear on linux/sgi.

• Libraries

Needed to include -lrt (the POSIX run time library) in the compile line.

• libuserd-HDF.so

For some reason, when creating libuserd-HDF.so, you still need this library even if fortran was
not built with it. I dunno why. If you do not have it, EnSight pukes with strange unsatisfied
externs. So, there should only be the ”!no fortran” below. configure.dat:

LIBS F WITH C(no fortran alpha new — !no fortran alpha new) = -lfor

• Striped File System

When putting files onto the striped file system (/scratch*), I have had problems with them
being read in correctly. Specifically, when creating a .so. To fix this, it seems that if you add
x permission to the file, it works. My guess is that the system treats executables differently.
So, “chmod ugo+x” the .so after creating it.

6.8 Porting to Sun

Well, finally got to do this. Took a day. This port was different in that there was no official
production machine to work with. I just did it on my local sun (and a couple of other suns).

• Help

Well, it sure does help to have compilers installed...Other than that, there is no help :).
/usr/lanl/gnu was very helpful in this regard.

6.8.1 Running on Sun

1. Getting on the Machine

As there is no “production” sun, find one somewhere and ssh to it.

2. Setting up the Environment

Make sure your path points to things that work. I was pointing to an “ar” that was broken.
This resulted in a failure in the build that took a bit to track down.

3. Runing with MPI

I used mpich that was already built. It was 32 bit...so I set 32 as the default build for suns.

6 PORTING 65

4. Debugging

Surprisingly, I didn’t have to use a debugger. Things worked. This is nice because as a test,
I tried to bring up a gui debugger (“debugger” which pointed me to “workshop -D” which
crashed) and dbx (which just core dumped right away...saving me some time).

6.8.2 Problems on Sun

Besides the above, I hit the following.

• Bit addressing

default compilation is 32 bit addressing. To get 64, you need to set add ”-xtarget=ultra -
xarch=v9”. I decided to have the default to be 32 bit because many tools (EnSight, mpich)
are built 32 bit. To get 64, just configure with ”-32 +64”.

• Shared memory

The place to ”shm open” virtual shared memory files on the sun is ”/”. This is different
than other architectures where the underlying posix shared memory functionality actually
creates files and thus the directory must be writable. So, on sun, the default location is
”/” and on other machines, the default location is ”/tmp”. This is modifiable by setting
the environment variable UPS TMPDIR SM (as explained in the comment header/reference
manual for UPS CM Sm malloc).

• Atomic Functions

UPS CM Sendrecv (when shared memory optimizations are turned on) uses system functions
for atomic operations (atomic add 32). While these are prototyped in
/usr/include/sys/atomic.h, Sunlung and I could not find the library containing the funcs any-
where. So, we just don’t use sendrecv optimizations and default to using MPI Sendrecv.

• Other

Typical problems that will occur with any ports. Many of these are designed via #ifdefs to
automatically pop up when moving to a new architecture. Things like

#if defined(_IRIX)
foo = 1;
#elif defined(_SUN)
foo = 2;
#else
sentence that will generate a compiler error
#endif

So, when you move to a new architecture, you cannot compile until you set things correctly.
The fixes included: compiler warn flag, optimization flags, module include path, addition libs
that must be linked with, size of long/long-long/pointers.

6.9 Porting to AIX

I worked with Susan Post with this one...so I didn’t have to surmount the learning curve I have had
to do on most machines. The “AIX” I ported to is frost.llnl.gov.

• Help

Well, Susan and llnl email help (lc-hotline@llnl.gov [925-422-4531]).

6 PORTING 66

6.9.1 Running on AIX

1. Getting on the Machine

There is an ssh version conflict between theta.lanl.gov and frost.llnl.gov (secure machines
bluemountain to white are fine). So, the following examples tell ssh/scp to use protocol 1.

When the version conflict is over, these options should be removed.

(a) get onto theta and get a kerberos ticket

(b) ssh -1 frost.llnl.gov

To copy files, you would type:

scp -oProtocol=1 <file> frost.llnl.gov:<path>

2. Setting up the Environment

There are no modules on frost, so location of stuff is in the standard places (eg /usr/loca/bin
for compilers).

3. Runing with MPI

You must set MP RMPOOL to be 0 (interactive) or 1 (batch). If you set to batch, you have to
use psub to submit jobs. I have not learned how to do this yet. I have been able to run on the
interactive machines (blue, frost, ice).

Then you can either:

poe -nodes 1 -procs 4 <exec>
mpirun -np 4 <exec>

I use the “poe” methos since it works with the debugger (see below).

4. Debugging

You can use totalview (although displaying is slow since you must display through ssh).

I could not get totalview to work with mpirun, but could with poe:

totalview poe -a -nodes 1 -procs 4 <exec>

If you run with more than 1 process, poe prompts you for the name of the exec and any
arguments.

When compiling with Fortran and using the C preprocessor, the compiler generates temporary
files. In order for totalview to display source, you need to keep these temp files using a -k
option when compiling. The name appears to be:

F<old file name>.f

6 PORTING 67

6.9.2 Problems on AIX

• Configure.dat

Things like name of C compiler, -i8-r8 options, blah blah...not too bad.

• Defines in Fortran

The define flag for fortran is “-WF,-P,FOO -WF,-P,BAR ...”. Noooo, nothing so simple as
“-DFOO -DBAR”. That would be too easy. Thanks to gmake, the pattern substitution was
easy to do in configure.dat.

• F2C LOWER CASE

Objects with mpxlf are lower cased without an underscore. Needed to add that option to
configure.dat and prototypes in .h files (include/master ups.h, src/cm,
experiments/pt2pt scheduling, test/aa—cm—dt—gs—ut).

• abs() vs (d—i)abs and Fortran

Replaced the last few dabs/iabs with abs. Let Fortran figure out which one to use...

• Bit Addressing Flags

Apart from setting bit addressing for the compiler (-q32 or -q64), you must set it for ar as
well (-X 32 or -X 64). For ar and for the compilers, and perhaps other things, you can specify
OBJECT MODE to be 32 or 64 as well. This will be overridden by any flags given.

• Fortran sleep system call

I had been using call sleep(int 1) to sleep for 1 second. On aix, the call must be call
sleep (int 1). If you use the first form, you compile and link. However, you hang in the sleep
call. So, I made a UPS wrapper UPS IO Sleep(double seconds) that calls the appropriate
sleep functions.

• 64 bit integer constants

When compiling with 32 bit addressing, the compiler pukes on 64 bit constants (well, truncates
them to 32 bit). So, I had to add the suffix llu:

unsigned long long b = 0xd0ab0f0002c00600llu;

If this does not work, I could do the following:

unsigned long long b = (b = 0xd0ab0f00) << 32 | 0x02c00600;

• STDOUT output

When building with the mp compiler suite (eg mpcc), all output to stdout is prepended with
some process information. The tests that do a diff on output to test correctness will fail
because of this (as the original output might have been run on a machine without this prefix).

If you set MP LABELIO to be no, you will not get this.

• compiler to use

The main compilers for serial builds are xlc, xlC, xlf. For parallel builds, the names are mpcc,
mpCC, mpxlf). The threadsafe versions have a r suffix. I used these (in order to coexist with
HDF).

6 PORTING 68

• tools:libuserd-HDF

For some reason, EnSight pukes at startup if I give it the location of the parallel lib (serial
works fine). I’ll still build it since my tests run and pass...

• mpirun vs. poe

We are supposed to use poe to run mpi apps. I found you could use mpirun as well. I
set environment variables (MP PROCS and MP NODES) instead of the poe flags because
otherwise poe asks me interactively for that info.

• build directories

I do not know if there is an official scratch space. So, I just built in my home directory.
There is no simple absolute path that is consistent across machines (eg /home/lmdm). I have
/g/g14/lmdm on white and /g/g20/lmdm on frost. This name inconsistency makes some
automation annoying.

• deallocate

I did not free some allocated Fortran arrays. When the routine was reentered, the system gave
an error about not being able to allocate the space. When I deallocated the arrays, things
worked.

• HDF

HDF is located at /usr/local/hdf5/.... You have to find the flavor you want under there.

6.10 Porting to

• Help

6.10.1 Running on ...

1. Getting on the Machine

2. Setting up the Environment

3. Runing with MPI

4. Debugging

6.10.2 Problems on ...

•

•

7 THE UPS CVS REPOSITORY 69

7 The UPS CVS Repository

The UPS project utilizes the Concurrent Version System, CVS[2] for software management and
version control. CVS allows several developers to contribute to the UPS software library in an
organized and coherent way.

Each developer works within his own directory space, and then “commits” source code to the
repository. This doesn’t, however, prevent problems from occurring. Instead, a set of rules must be
followed by each developer. These rules are not enforced by CVS.

The UPS CVS repository is used to maintain working, tested code. It should not be used as a
backup system.

7.1 Version Number

The version number of UPS is found in several different places (and in slightly different forms [an
example is given in square braces]):

• configure.dat variable [PRODUCT VERSION = v-02-07-03]

• exec variable [UPS VERSION = 20703]

• Compiled Function Name [ups version 20703]

• CVS Tags [v-02-07-03]

• Installation Directory [v-02-07-03]

• UserGuide/DeveloperGuide [v-02-07-03]

The value of PRODUCT VERSION and PRODUCT VERSION PREVIOUS in configure.dat dictate all of
these. Make sure it is correct.

7.2 Committing code to the repository and installing/releasing

Your work should be committed to the repository on a regular basis, where the time interval is
defined by the amount of work you have done, the location of this work (several different directories
adds to confusion), and the amount of work done by others.

The first step to committing source to the repository is to have your code or idea reviewed by a
peer. People may commit code so that others may have access for the purpose of review. When using
this method of peer review, the developer should use the UPS/peer review/<username> directory.
Upon committing, you will be asked to enter the name of the peer reviewer. You can just put your
email address. When it has been reviewed, then just remember to remove it from the repository.

After this is done and your code is written, ensure that your version of the library compiles
and successfully passes all of the tests, including those tests that may not appear related to your
changes and additions. Recompile the library and run all the tests. Pay special attention to any
warnings/remarks you get - do they make sense? Make sure that any changes you have done have
not introduced any new bugs in other areas.

Following is the procedure for fixing a bug and committing to the repository. This includes steps
that ensures new files you may have created are included, allows you to investigate potential code
conflicts before committing, and sees which files have been altered by others and which will therefore
be changed in your copy of the library. These steps are not enforced by CVS; instead it is the
responsibility of UPS developers to ensure that they are followed.

1. Assign Debugger

7 THE UPS CVS REPOSITORY 70

(a) Discuss with team who should fix bug.

(b) Modify and commit peer review/<developer>/ToDo.<developer> to reflect assigned
work.

2. Verify Bug

Check out version of UPS that breaks for user and run their test code.

3. Debug

(a) Create test case (to be added to testing directory) that recreates bug. Successfully pass
this test with debugged code.

(b) Run full test suite for all packages while fixing bug. This insures no other bugs will be
created.

4. Commit Debugged Code

(a) Get a peer reviewer to O.K. your changes.
The following steps can be followed to get a summary of the changes that have been
made. Looking at your changes as a whole can help find potential problems (eg missed
modifications, debug statements that should be removed, conflicts, ...).

i. cd <local location of UPS>/UPS

Gets to top directory. You want the cvs commands to work on your entire working
directory (so nothing slips in the cracks)

ii. cvs -n update -d -P | sort

Gets a listing of the status of all the files in your working directory without actually
doing any changes. Pay careful attention to:
? : unknown file. Have you forgotten to add this file to the repository (via cvs add)?
C : another user has modified a file I am working on. Are you safe to update your

area? Do a cvs log <file> | more and talk to the author to make sure.
U : another user has modified a file I am not working on. Will the changes this user

has done affect your work? Or will you affect his? Do a cvs log <file> | more
and talk to the author to make sure.

iii. cvs update -d -P | sort ; gmake clean; gmake

Get the most recent version from the repository. Recompile and rerun the tests to
make sure all the testers still pass

iv. cvs diff -D now > diff (on one window)

Gets the complete list of changes you have made. Look over these changes for any
possible errors. You use this when you do a commit on another window. Don’t expect
to remember all the changes you have made....use cvs diff as a reminder.

7 THE UPS CVS REPOSITORY 71

v. cvs -n update -d -P > check

This creates a template for your commit log message. The form is:

A <added filename with relative path from checkout>
M <modified filename with relative path from checkout>
R <removed filename with relative path from checkout>
<3 spaces><synopsis of changes>
<repeat as needed>

Figure 1: Example of CVS Commit Log

Bring up the file check in another window and modify it to create your commit log.
vi. Discuss changes with Peer Reviewer.

You might also want to commit files to your peer review directory so that the peer
reviewer can look at them.

(b) Add discussion of major changes since last release to README.
If your commit is substantial, make a note of it in the README.

(c) cvs commit -F check

5. Release Debugged Code to Users

(a) gmake release notes

Review all changes.txt and see if anything needs to be added to the README (eg major
changes since last release). If so, commit the README when finished. Use the “major
changes” as an email to send out to ups-users@lanl.gov.
You will need to decide the level of the release at this point.
The form for release numbers is:

v-<Major Changes>-<Changes>-<Minor Changes>_<Subrelease>

• Major Changes
Adding new package(s).

• Changes
Adding extensive new functionality to package.

• Minor Changes
Bug fixes or minor functionality changes.

• Subrelease
Temporary changes for a user to test.

In the “gmake install dev” stage, you will be asked to enter this name which will be used
for the install directory name and for CVS tagging.

(b) gmake full

Builds all necessary files (libraries, includes, docs, ...) If cvs accessible, this command
will remind you how to turn off commits before doing anything.
This cleans up your lib/include directories and builds all the necessary files for a basic
install (as specified by OPTIONS FULL in configure.dat).

7 THE UPS CVS REPOSITORY 72

(c) If you wish to include additional libraries, you can then:

i. configure.pl go <other options>

ii. gmake clean [this will clean so the new lib can be built]

iii. gmake

Repeat the above steps for any other additional libraries.

(d) gmake install dev

Just answer the questions.
“gmake install” does the following functions:

• make sure source is up to date (if cvs accessible)
• copies files to installation area
• creates latest link
• installs web pages
• cvs tags repository (if cvs accessible)
• prints uninstall instructions

(e) Creating a source distribution
If you wish to create a source distribution tar file, you can execute the command “gmake
dist”.

8 ADDING PARTS 73

8 Adding Parts

The following are examples that give an idea of what has to be done when new parts are added. For
all cases, try and follow the example of other tests/files/packages for how to do something.

8.1 Adding a New Test

This might be done if you wish to stress some functionality (with the gs package as an example).

1. Create necessary files

• gs/fortran/test new.F: New Fortran test function.

2. Modify necessary files

• gs/fortran/prog.F: Main fortran program calls tests.

• gs/fortran/Makefile: Must compile new test (remember to add Fortran dependencies)

8.2 Adding a User Accessible Function

When a new function is written for the user, the following steps have to be done (with the gs package
as an example).

1. Create necessary files

• UPS GS NEW.c: Fortran77 Interface

• ups gs new.c: C Interface (generates Fortran interface)

• internals/gsi mpi/upsi gs new.c: Internal Interface

• New test: see Adding a New Test (section 8.1 page 73)

2. Modify necessary files

• Constants
master ups.h contains most constants. You will have to add entries to the following
enums:

(a) UPS Error enum

(b) UPS Code location enum

• Makefiles
For the added files, you need to edit the Makefiles in order for them to be compiled.
Remember to add dependencies of fortran files because of the fortran use statement.

• Mod files
Edit UPSF GS MOD.F and add UPSF GEN GS NEW to the use list.

• Prototypes
All C functions are prototyped. Prototypes are kept in:

– master ups.h

– upsp gs.h

– upsi gs.h

8 ADDING PARTS 74

8.3 Adding a New Package

As an example, the zz package is being created. For all files, look and see what other packages did
and mimic them.

1. Create necessary files

• src/zz, testing/zz: see Adding a User Accessible Function (section 8.2 page 73)
Add all the src and testing files in a way similar to other packages.

• doc/UserGuide/ref/ups ug zz refman.tex: short blurb introducing the zz package’s
reference section.

2. Modify necessary files

• src/Makefile: Add zz package to list.

• testing/Makefile: Add zz package to list.

• configure.dat: Variables need to be updated:

– DEFINES: All defines
– INCLUDE PATH: Location of all .h files
– UPS INTERNALS: Name of all internals name
– LIBS: All libs
– ZZ DEFINES: Package specific defines
– ZZ INCLUDES: Package specific includes
– ZZ INTERNAL: Package specific internal name
– ZZ LIBS: Package specific libs

• UserGuide: UserGuide Information
Look for places where other packages are mentioned.

– ups ug introduction.tex

– ups ug packages.tex

– ups ug reference.tex

– header2latex.pl

• Web page: The web pages
Look for places where other packages are mentioned.

8.4 Adding New Aux Product

In general, when adding something, copy/follow-by-example files that already exist. A new aux
product is no different:

1. mkdir aux/<aux dir>

2. cvs add <aux product>.tar.gz

3. Copy then modify Makefile from another aux dir

4. Copy them modify configure local.dat from another aux dir

5. Modify configure.dat:AUX DIRS to point to new directory

8 ADDING PARTS 75

8.5 Adding New Tool

In general, when adding something, copy/follow-by-example files that already exist. A new tool
product is no different:

1. Copy/Modify existing tool files to new tool directory.

2. Modify configure.dat:TOOLS BUILD variable

8.6 Adding Ability for Someone to Access UPS

“Access” to UPS means different things. This can range from just getting emails notifying when a
new version has been installed all the way to full write permission into the UPS CVS repository.

The following are the different levels of access in order of immersion (and the steps needed to be
performed):

1. Adding to the ups-users mailing list:

This will inform the user when a new version has been installed. Access to UPS will be limited
to what is contained in the /usr/projects/ups/<version> directory. This includes libraries,
scripts, and documentation.

See the “...modify the ups-team/ups-user mailing lists” section under the “How do I” chapter.

2. Adding to the ups unix group:

This will allow the user to check out the ups product. They will be able to look at the
most current source and build UPS. They will also have manual write access to the reposi-
tory/installation directory. So, one must be careful of “rm -f *” commands...

In theory, to add a user to the “ups” unix group, you should do the following:

(a) telnet to register.lanl.gov

(b) Edit a File Sharing Group Name (8)

(c) enter “ups”

(d) Set File Sharing Group Attributes (6)

(e) Add Members (3)

(f) enter the username(s) of the people to add

(g) hit return a bunch of times to exit

This should then propagate to all the systems (open and closed).

This works for theta/bluemountain...but doesn’t for nirvana. That is to say the above works
for some systems and not for all. So, I do the above and then email the consultants (con-
sult@lanl.gov) and tell them that you have added users via register and need to make sure
they are added to theta, bluemountain, nirvana, qalpha, ... whatever.

3. Adding to the ups-team mailing list:

This will inform the user about the details of ups progress. This is important if the user needs
to know whenever a commit is done (as the user will now get commit log emails) or if the user
wishes to hear the innermost secret discussions regarding UPS.

See the “...modify the ups-team/ups-user mailing lists” section under the “How do I” chapter.

8 ADDING PARTS 76

4. Adding to permission cvs.pl

This allows the developer (note the change from the word “user” to “developer”) full CVS write
access. The prerequisite to this is that the developer should have read the DeveloperGuide
and understands the rules for committing. All the above levels are included if given this level.

Check out CVSROOT and edit permission cvs.pl and add the developer’s name to the per-
mission list. Remember to commit again.

People will have different needs and it is important to give them the correct access.

9 HOW DO I 77

9 How do I

This section is intended as a reference to answer the question, “How do I...”. If you do not find what
you are looking for here and you figure out how to do whatever it was you were trying to do, then
feel free to add it to this section.

9.1 CVS

9.1.1 ...get rid of empty directories and get files that others have a dded

Whenever I do an update (unless I have a good reason not to), I want to prune any empty cvs-
controlled directories and get files/directories that others have added to the repository.

To do this, you need to:

1. cvs update -d -P | sort

Note: if you have any temp files in a directory you want pruned, you have to go in by hand and
remove them before cvs will prune the directory.

9.1.2 ...look at an older version of an existing file with cvs?

To get the latest version of a file that was committed to the repository, you can just:

1. cvs update -p [file] > [file].orig

This places the latest committed version of file in file.orig.

9.1.3 ...look at a specific version of a file

To get a specific version of a file, you can just:

1. cvs update -p -r [version] [file] > [file].orig

If you need some prompting on what version you actually need, you can just cvs log [file]
| more to get a listing of the log messages for that file. Then you pick the version you want out of
that file.

9.1.4 ...look at an old version of a file in a directory that doesn’t exist anymore

Suppose you need to look at an old C tester and the C directory doesn’t even exist anymore. First
you have to get the directory back:

1. cvs update -d [directory name]

If you are missing directories b/c/d and you wish to look at file b/c/d/hmm.c you can do the
following to get the directory:

1. cvs update -d b

Now, to more the last non-empty version (because the file was removed, the last version is empty),
you have to find the last committed version. Do a log command on the file and get the pre-removal
version. before it was removed.

1. cvs log [file] | more

2. cvs update -p -r [version] [file] > [file].orig

9 HOW DO I 78

When you are done with the directories, you can “prune” them again by:

1. cvs update -P [directory]

The directory must be recursively empty (except for other subdirectories and, of course, the
“CVS” directory(ies).

9.1.5 ...check out a previous installation

Suppose a user has a problem with an old version of UPS (and cannot, for some reason, get the
newest version). If you want to get access to the source that created this version, do the following:

1. [get version number that user has]

2. cd [temp space]

3. cvs co -r [user version converted into v-##-##-##] -P UPS

Example: v-01-02-01

Note: you will not be able to modify this source and save it to the repository. To do this, you
need to make a cvs branch.

9.1.6 ...add a directory tree to the repository

Suppose you wish to add the directory tree a/b/c and all the files under it to the directory
UPS/testing (which exists in the repository).

1. cd a

2. cvs import UPS/testing/a vt rt

3. [enter log message explaining your import]

If you had created this directory tree in your working repository, you need to remove it and
then update to get it under cvs control. Suppose, you had created the tree in the place you had it
installed.

1. cd UPS/testing

2. rm -rf a

3. cvs update -d -P a

9.1.7 ...remove a directory tree from the repository

Suppose you wish to remove the directory UPS/testing/a and all the files it contains from the
repository.

1. [remove by hand all the files (ignoring the CVS directories) in
a and its subdirectories]

2. cd UPS/testing

3. cvs remove a

4. cvs commit

5. cvs update -d -P a (prunes the empty directory a)

9 HOW DO I 79

9.1.8 ...turn off commits

There will be times when you need to turn off commits (eg to test something or to do something
with CVS that cannot be interrupted by another user’s commits). You can do the following:

1. cd $$CVSROOT/CVSROOT/

2. [edit permission cvs.pl and have only your name as a valid user]

Due to permissions, you might have to copy permission cvs.pl to a new file, remove permis-
sion cvs.pl, and copy back to permission cvs.pl.

3. [do you testing]

4. [edit permission cvs.pl and restore the valid users]

9.1.9 ...look at the differences you have made in a file as a whole

If you just type in “cvs diff <file>”, you can get the differences you have made to a file. However,
it will be in simple diff format (without any context). If you wish to see the whole file (with “ifdef”
control sequences), you can do the following:

1. cvs diff --ifdef=new <file>

This sends the ifdef’d code to STDOUT.

9.1.10 ...check the differences between a file and the most recent checked in version

When you type in “cvs diff [file]” you only get the changed you have made to the file. Suppose
someone had committed a version and you want to see the differences before you do an update. Do
the following:

1. cvs diff -D now [file]

9.1.11 ...move the whole repository to a new location

There might be a need to move the whole repository from one directory to another directory. This
is how it can be accomplished:

1. Have everyone commit (or copy their modified files to another area).

Once you move the repo, they will not be able to access the old repo any more.

2. Change the permissions of the Repository so that only you have access.

You want the repo to be unchanging.

3. tar cf ups.tar Repository

Create a tar file for the move (and for backup purposes).

4. cp ups.tar <new location>

5. cd <new location>

6. tar xfp ups.tar

This will create Repository in the new area. The “p” option will maintain all the old permis-
sions.

9 HOW DO I 80

7. move any other files from the old area to the new one.

There might be other files (specifically user accessible directories) that you wish to move.

8. Set the correct permissions for the repository.

(a) directories need to be group writable with the group sticky bit set.
This is so when someone enters a directory and creates a file, it will have the correct
group ownership.

(b) files should be group writable, in general.
Plain files under CVS control need only be group readable (but directory permission needs
to be correct).

9. Everyone must change all references of the old area to the new one in their environment.

Typical places are the CVSROOT environment variable and the user’s PATH.

10. The mover needs to set hardwired paths to correct areas.

At this point, the mover can checkout a fresh copy of the product and make commits.

There were a few places in some text (latex/html) files that have the hard path in them. Also,
one needs to edit configure.dat and change the UPS INSTALL DIR variable. This variable
cannot use CVSROOT because some installations will be on machines without cvs control.

11. Everyone needs to delete their working version and checkout a fresh one.

The best way to check out the product is to :

cvs co -P <product>

The “-P” will prune empty directories.

After the mover has fixed a few things (previous step), everyone is ready to checkout a new
version. For those that had modified files, they will need to copy them to the fresh checkout.

9.1.12 ...abort a commit

Sometimes you’ll be doing a commit and realize that you do not want to continue.
The commit has already processed any files for which you have successfully entered a log message.

To stop the commit of the files in your current log message and to the rest of the files to be processed
for the commit, simply:

1. Exit the editing session (“:q” or “:q!” in vi)

2. Answer “n” to the continue question.

9 HOW DO I 81

9.2 Perl

9.2.1 ...edit a whole bunch of files with a simple search/replace

I’ll start off by saying the whole command and then explaining the parts:

1. find . -name ’*.[ch]’ -print | /bin/xargs perl -pi -e ’s/UPS/ups/g’

find . find recursively from the current directory
-name ’*.[ch]’] any file that ends in “.c” or “.h”
-print print the files to stdout
| pipe the output of the previous command to
/bin/xargs a program that takes each line of output and send it to
perl an awesome tool
-p take each line of input and echo it first
i edit the file in place
-e with the expression
-s/UPS/ups/ before printing the line, replace “UPS” with “ups”
g as many times as you have to in a line

As another example, suppose you want to replace “UPS CM ERROR” with “UPS ERROR CM”.
The trick is, you do not wish to replace “UPS CM ERROR A” with “UPS ERROR CM A”. That
is, you wish to replace, but check word boundaries. You wish to make this change on all “.c” and
“.h” files in src.

You would :

1. cd src

2. find . -name ’*.[ch]’ -print |
/bin/xargs perl -pi -e ’s/(\b)UPS_CM_ERROR(\b)/$1UPS_ERROR_CM$2/g’

() remember the contents of the parenthesis
backslash b word boundary
$1 the 1st parenthesis’s contents
$2 the 2nd parenthesis’s contents

9 HOW DO I 82

9.3 Make

9.3.1 ...eliminate most errors I am having with make

Make sure you are using gnumake.

9.3.2 ...switch from creating a debug version to an optimized version of libups.a

In the top level directory (UPS), there is a perl script called configure.pl. It parses configure.dat
to make make.inc (which all makefiles include). To temporarily remove “debug” from the default
options, you can just type in “configure.pl go -debug” which stands for “minus debug”. Remember
that if configure.pl is run again without the additional option, the default values are used.

To permanently change the options (so that you can just type in “configure.pl go”) you can edit
the “CONFIGURE OPTIONS” line inside configure.dat to pick whatever options you wish.

9.3.3 ...easily run the tests given that I have 2 libraries

You do not have to recompile the source again, but you will have to recompile the testers.

1. cd UPS

2. [edit CONFIGURE OPTIONS in configure.dat for your desired options]

3. configure.pl go

4. gmake bld run tests

5. [edit CONFIGURE OPTIONS in configure.dat for your desired options]

6. configure.pl go

7. gmake bld run tests

9.3.4 ...install ups, but just copy the files

There might be times when you wish to copy all the needed files to the installation area...but you
do not wish to do the other things an install does (like cvs tagging and changing the latest link).
This is useful when installing 1 set of libraries compiled under the default compiler and another set
compiled under the latest compiler.

Follow these steps:

1. [set your compiler to new compiler]

2. gmake full

If cvs accessible, this command will remind you how to turn off commits before doing anything.
Docs and release notes will be created if they do not exist. If you wish to create new versions,
you must remove the old versions by either removing the files or by doing a gmake distclean.

3. gmake install copy INSTALL NAME=v-##-##-##<name>

For example, INSTALL NAME=v-02-01-03 MIPSpro7.3

4. [set your compiler to the default compiler]

5. gmake full

6. gmake install

Note: install is done second because of possible tagging (which affects UPS VERSION).

9 HOW DO I 83

9.4 SQA

9.4.1 ...get others to review my code I wish to commit

Suppose you have made changes to a file and are ready for it to be reviewed by peers. There are
several possibilities for getting that code to the reviewers. You could email them the files, leave it
group readable somewhere, or print it out and give them hard copies.

We have a directory called “peer review” in the top level directory specifically set up for this
purpose. You will place the files you wish reviewed under the subdirectory specified by your user-
name.

The following is a method that puts your code into the repository so that reviewers can have
access to it.

Suppose you have changed ups gs setup and the internals file upsi gs setup.c and wish them to
be reviewed.

1. cd UPS

2. cvs update -d peer review/<username>

[this gets the subdirectory if it didn’t exist]

3. cp src/gs/ups gs setup.c peer review/lmdm

4. cp src/gs/internals/gsi mpi/upsi gs setup.c peer review/lmdm

5. cvs add peer review/lmdm

[this will add everything in that subdirectory to the repository]

6. cvs commit peer review/lmdm

7. [get the peer review done - when done, remove files]

8. rm peer review/lmdm/*.c

[this removes the .c files]

9. cvs remove peer review/lmdm

[this cvs removes the files]

10. cvs commit peer review/lmdm

9.4.2 ...use Insure (compile-time/run-time code checker)

Insure is located on the nirvana, theta, and bluemountain machines. You can use Insure to find
many bugs in C/C++ code. It will also so some checking (e.g. memory problems) for other code
(e.g. Fortran) but it isn’t as thorough.

Currently, Insure4.1 seems to work and Insure5.1 does not. To run Insure4.1, you need to set
the following (which I do in my .cshrc):

setenv PARASOFT /users/<USER_NAME>/insure
set path = ($path ${PARASOFT}/bin)
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${PARASOFT}/lib
setenv MANPATH ${MANPATH}:${PARASOFT}/man

And then I make a link in my home directory of:

9 HOW DO I 84

ln -s /usr/local/packages/insure++ ./insure

Set the following in your .cshrc to load the new insure5.1 module:

if (-f /opt/modulefiles/insure++5.1) then
module load insure++5.1

endif

To build ups with insure, just add insure to CONFIGURE OPTIONS in configure.dat. Due to
a set number of user licenses, you cannot do a large parallel build. So, a smaller build is performed
(which takes much longer).

Then you just run your executable. It has a fairly intuitive GUI. I would suggest printing out
the insure documents (found in the same location as the libs/executables).

9.4.3 ...use Purify (run-time code checker)

You must be on a machine that has purify (and purify must be in your path). Purify instruments
your executable so, unlike Insure, you can easily toggle purify on/off. Typically one might do the
following:

1. gmake (to build library/run tests)

2. configure.pl go +purify (will run purify)

3. cd testing/cm/fortran (go into test you are interested in)

4. rm xtest cm (remove test so that new test will run via purify)

5. gmake && gmake run (builds purify’d exec and runs it)

6. vi purify log.txt (examine the purify output)

9 HOW DO I 85

9.5 Xemacs

9.5.1 ...change file type mode

Xemacs tries to get the correct file type (so, for example, it knows how to indent when you hit the
tab key. However, sometimes it doesn’t do very well. For example, to change to modern Fortran
mode, you can do the following:

1. <esc>-x

This activates command line mode.

2. f90-mode

What you might wish to do is add some lines to your .emacs file so that certain files are always
input in a certain mode.

(autoload ’f90-mode "f90")
(setq auto-mode-alist (cons ’("\.F$" . f90-mode) auto-mode-alist))

9 HOW DO I 86

9.6 Misc

9.6.1 ...recover files from a NetApps file system

Fortunately, the home area on Blue Mountain is a netapps. This makes file recovery simple. Say
you deleted a file that you can’t get back via cvs commands. Here is the process

1. df -k [the directory you lost the file]

This tells you the actual filesystem you are mounting.

If the output was “mother:/p0/local/irix/default”, the main filesystem is “mother:/p0”

2. cd /n/mother/p0/.snapshot

3. cd [last time period you need]

4. cd [path to missing file]

5. cp [file] [your local area where you need file restored]

9.6.2 ...modify the ups-team/ups-user mailing lists

The ups-team@lanl.gov and ups-user@lanl.gov mailing lists are maintained by the LANL’s list man-
ager. To modify these lists, do the following:

1. Go to http://listman.lanl.gov

2. Click on modify.

3. Enter “ups-team” or “ups-users” for the list name.

4. Enter the password and click on go.

REFERENCES 87

References

[1] R. Barrett and M. McKay Jr. UPS user’s guide and reference manual. Technical Report LA-UR
99-2857, Los Alamos National Laboratory, 1999.

[2] Per Cederqvist et al. Version management with cvs. Free Software Foundation, 1993.

[3] Message Passing Interface Forum. MPI: A message-passing interface standard. International
Journal of Supercomputer Applications, 8, 1994.

[4] Richard Stallman. Gnu coding standards. Free Software Foundation, 1998.

[5] The GNU Xemacs text editor. www.gnu.org. Free Software Foundation, 1998.

A SOURCE EXAMPLES 88

A Source Examples

A.1 Makefile Example

#
#
#..
#...Makefile ...
#... ...
#...Purpose ...
#...======= ...
#...Creates architecture dependent includes from the c include files ...
#... ...
#...Also, does "cvs status -v ../README" and gets first occurrence of the ...
#...version which it places inside master_ups.h (and hence in upsf.h) ...
#... ...
#...Targets ...
#...======= ...
#...all: creates include files ...
#...clean: removes temp files ...
#...clean_n_all: first cleans then creates includes ...
#... ...
#..

#...........................
#...Variable Descriptions...
#...........................
DIRECTORY_NAME = include # name used for echo statements
UPDATED_FILE = updated # name of the updated file

#...................
#...Include Files...
#...................
include ../make.inc

#..
#...all: creates include files ...
#..
all::

@ echo "--gmake $@ ($(DIRECTORY_NAME))--"
./sync_f_include.pl $(ARCH) $(DEFINES)

#..
#...clean: removes temp files ...
#..
clean:

@ echo "--gmake $@ ($(DIRECTORY_NAME))--"
- rm -rf $(MACH) $(OBJS)

#..
#...clean_n_all: first cleans then creates includes ...

A SOURCE EXAMPLES 89

#... 1) clean: removes temp files ...
#... 2) all: creates include files ...
#..
clean_n_all: clean all

@ echo "--gmake $@ ($(DIRECTORY_NAME))--"
@ echo "things have been cleaned and built"

A SOURCE EXAMPLES 90

A.2 C Include File Example

#ifndef UPSP_GS_H
#define UPSP_GS_H

#ifdef __cplusplus
extern "C"
{
#endif

/* === */
/* UPS Gather/Scatter private include file. */
/* === */

/* --------------------------------- */
/* global variables for gs component */
/* --------------------------------- */
typedef struct
{
int
initialized, /* if gs is initialized already */
io_pe; /* io pe (should be in aa component) */

int /* For UPS_GS_Setup. */
PE_index_count, / how many indices belong to each pe */
PE_recv_count, / indices to be received */
PE_send_count, / indices to be sent */
number_gs_structs; /* the current number of gs structs in use */

int
request_status_count; /* count of items that below buffers can hold */

void
recv_request, / recv request buffer */
recv_status, / recv status buffer */
send_request, / recv request buffer */
send_status; / send status buffer */

int /* For UPS_GS_Collate and UPS_GS_Distribute. */
counts, / how many each pe will be send/recv ’ing */
displs; / offset to pe’s data */

upsp_gs_id_data
first_gs_id_data, / points to first gs communication struct */
last_gs_id_data; / points to last gs communication struct */

} ups_gs_globals;
UPS_EXTERN ups_gs_globals upsp_gs;

A SOURCE EXAMPLES 91

#include "upsi_gs.h"

/* -- */
/* remove typesafe linkage if compiling under c++ */
/* -- */
#ifdef __cplusplus
}
#endif

#endif /* UPSP_GS_H */

A SOURCE EXAMPLES 92

A.3 C Source Example

***** Note: required fields will be marked by ‘‘<<<required>>>’’ *****

#include "ups.h"
#include "upsp_aa.h"

<<<required one line per variable>>>
int UPS_CM_Move(

const void *x,
void *y,
int count,
UPS_DT_Datatype datatype,
UPS_AA_Operation reduce_op
)

{

<<<required begin header comment delimiter>>>
/* ==

<<<required Name>>
Name
====
UPS_CM_Move

Package
=======
cm <<1 word or, if not given, derived from second part of NAME above>>

<<<required Purpose>>>
Purpose
=======
Brief description of the routine

<<<required Arguments (intent, type, and description)>>>
Arguments
=========
x Intent: in

C type: const void*
Fortran type: user_choice {<<dimension spec:possible count spec>>}
The starting address of the local values.

y Intent: out
C type: void*
Fortran type: user_choice {<<dimension spec:possible count spec>>}
The starting address of the result of the reduction.
Note that this cannot be the same memory location as {\tt x}.

A SOURCE EXAMPLES 93

count Intent: in
C type: int
Fortran type: UPS_KIND_INT4 {0}
The number of local values. That is, the length of {\tt x}
in terms of the input datatype.

datatype Intent: in
C type: int
Fortran type: UPS_KIND_INT4 {0}
The type of the local data.
See the User Guide for datatypes relevant to the
reduction operation. Note the special datatypes
that must be used for the {\tt MAXLOC} and {\tt MINLOC}
operations.

reduce_op Intent: in
C type: UPS_AA_Operation
Fortran type: integer
The operation to be performed upon the local data. \\
Please see UPS_AA_Operation
(section \ref{constant_UPS_AA_Operation}
page \pageref{constant_UPS_AA_Operation}) for a listing of
the possible operations.

mask Intent: in
C type: (na) see UPS_CM_Movem
Fortran77 type: (na) see UPS_CM_Movem
Fortran type: (optional:UPS_CM_Movem) UPS_KIND_INT4 {x}
Mask for input variable x.

ierr Intent: out
C type: (na) int (function return value)
Fortran type: integer
Return status. Values other than 0 indicate an error.

UPS_MEM_NUM_GUARD_BLOCKS Intent: in
C type: (na) int Environment Variable
Change the default value of the number of
additional blocks allocated for guard bytes before
and after the requested space.
By default, this value is 1 and the size of
a block is the size needed to align memory
(typically the size of a C double).
Remember to propagate environment variables to
all processes. May not be modified during run.

Discussion
==========
(LaTeX form additional in depth discussion can go here.)

A SOURCE EXAMPLES 94

Examples
========
(LaTeX form examples can go here.)

<<<required Return Values>>>
Return Values
=============
Returns UPS_OK if successful.

Errors
======
(any discussion of specific error return values here)

Versions
========
(any discussion about other version [mpi/pvm/serial, cvs version, ...])

See Also
========
(whitespace separated list of user C interface routine names)

<<<required Program Flow>>>
Program Flow
============
1) gather data into temporary buffer depending upon process info
2) move data in reverse process order so process 0 done last.

This is done because we need so save process 0 for input/output.
3) (other statements)

<<<required end header comment delimiter>>>
=== */

<<<required Local Declarations (variables w/ comment on separate line)>>>
/* ------------------ */
/* Local Declarations */
/* ------------------ */

double
alpha, /* temporary storage variable */
x_out[10], /* starting data */
y_out, / intermediate data */
zeta, /* temporary storage variable */
z_out[10]; /* final data */

float
precision; /* stores the precision of the answer */

int
i, /* counter variable */
ierr = UPS_OK; /* error return variable */

A SOURCE EXAMPLES 95

<<<required Executable Statements>>>
/* --------------------- */
/* Executable Statements */
/* --------------------- */

/* ------------- */
/* Assertions In */
/* ------------- */

<<<check for package initialization>>>
UPSP_ER_ASSERT(upsp_cm.initialized,

"UPS not initialized - call UPS_AA_Init()",
UPS_ERROR_AA_INIT);

<<<check for argument validity>>>
UPSP_ER_ASSERT(x && y,

"Invalid addresses",
UPS_ERROR_AA_BAD_PARAMETER);

UPSP_ER_ASSERT(count >= 0,
"Invalid parameter",
UPS_ERROR_AA_BAD_PARAMETER);

/* ----------------------- */
/* variable initialization */
/* ----------------------- */
x[0] = 1;
y[0] = 2;
z[0] = 3;

<<<when allocating memory, use upsp_ut.h macros>>>
UPSP_UT_MEM_MALLOC(10*sizeof(double), &(y));

<<<required long code block comment saying what is to be done>>>
/* -- */
/* loop to set new values based upon input parameters. */
/* this is done to allow easier access to other routines */
/* -- */
for (i = 0; i < 10; i++)

<<<required ‘‘{’’ on lines by themselves>>>
{
/* some code */
ierr = upsp_aa_foo(x, y, z);

<<<required error check code>>>
UPSP_ER_ASSERT(!ierr,

"upsp_aa_foo",
UPS_ERROR_CM_MOVE);

}

<<<required long code block comment saying what was done>>>
/* --- */
/* DONE: loop to set new values based upon input parameters. */
/* --- */

A SOURCE EXAMPLES 96

/* --- */
/* read in data file for movement technique to be used */
/* --- */

/* finish routine */

}

	COPYRIGHT
	Introduction
	Getting Started
	Directory structure
	Main UPS Directory
	aux
	doc
	include
	lib
	peer_review
	script
	src
	Automatic Generation of Interfaces
	src User API
	src internals
	src utils

	testing
	tools

	Programming Practices
	Variable Name conventions
	Style
	Spacing
	Comments
	Common Functionality

	Memory Allocation
	Error Checking
	Environment Variables

	Porting
	Necessary Modifications
	Porting to SGI
	Running on Nirvana and Blue Mountain
	Running on SGI workstations
	Problems on SGI

	Porting to TFLOP
	Running on TFLOP
	Problems on TFLOP

	Porting to Linux:naxos
	Running on Linux:naxos
	Problems on Linux:naxos

	Porting to Linux:lambda
	Running on Linux:lambda
	Problems on Linux:lambda

	Porting to Linux:intel1/bengal
	Running on Linux:intel1/bengal
	Problems on Linux:intel1/bengal

	Porting to Compaq Q - Alpha/HP/OSF
	Running on Compaq Q
	Problems on Compaq Q

	Porting to Sun
	Running on Sun
	Problems on Sun

	Porting to AIX
	Running on AIX
	Problems on AIX

	Porting to
	Running on ...
	Problems on ...

	The UPS CVS Repository
	Version Number
	Committing code to the repository and installing/releasing

	Adding Parts
	Adding a New Test
	Adding a User Accessible Function
	Adding a New Package
	Adding New Aux Product
	Adding New Tool
	Adding Ability for Someone to Access UPS

	How do I
	CVS
	...get rid of empty directories and get files that others have a dded
	...look at an older version of an existing file with cvs?
	...look at a specific version of a file
	...look at an old version of a file in a directory that doesn't exist anymore
	...check out a previous installation
	...add a directory tree to the repository
	...remove a directory tree from the repository
	...turn off commits
	...look at the differences you have made in a file as a whole
	...check the differences between a file and the most recent checked in version
	...move the whole repository to a new location
	...abort a commit

	Perl
	...edit a whole bunch of files with a simple search/replace

	Make
	...eliminate most errors I am having with make
	...switch from creating a debug version to an optimized version of libups.a
	...easily run the tests given that I have 2 libraries
	...install ups, but just copy the files

	SQA
	...get others to review my code I wish to commit
	...use Insure (compile-time/run-time code checker)
	...use Purify (run-time code checker)

	Xemacs
	...change file type mode

	Misc
	...recover files from a NetApps file system
	...modify the ups-team/ups-user mailing lists

	Source Examples
	Makefile Example
	C Include File Example
	C Source Example

